Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T18:01:20.542Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 May 2018

Scott D. Slotnick
Affiliation:
Boston College, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D. R., Wong, A. T. & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 1363–1377.CrossRefGoogle ScholarPubMed
Allen, R. J., Vargha-Khadem, F. & Baddeley, A. D. (2014). Item-location binding in working memory: Is it hippocampus-dependent? Neuropsychologia, 59, 74–84.CrossRefGoogle ScholarPubMed
Alvarez, P. & Squire, L. R. (1994). Memory consolidation and the medial temporal lobe: A simple network model. Proceedings of the National Academy of Sciences of the United States of America, 91, 7041–7045.Google ScholarPubMed
Anderson, M. C. & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. Trends in Cognitive Sciences, 18, 279–292.CrossRefGoogle ScholarPubMed
Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., Glover, G. H. & Gabrieli, J. D. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303, 232–235.CrossRefGoogle ScholarPubMed
Andreano, J. M. & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning & Memory, 16, 248–266.CrossRefGoogle ScholarPubMed
Aristotle, [350 BCE] (1941). On memory and reminiscence. In McKean, R. (Ed.), Beare, J. I. (Trans.), The Basic Works of Aristotle (pp. 607–617). New York: Random House.Google Scholar
Awh, E., Vogel, E. K. & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139, 201–208.CrossRefGoogle ScholarPubMed
Axmacher, N., Draguhn, A., Elger, C. E. & Fell, J. (2009). Memory processes during sleep: Beyond the standard consolidation theory. Cellular and Molecular Life Sciences, 66, 2285–2297.CrossRefGoogle ScholarPubMed
Babb, S. J. & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16, 1317–1321.CrossRefGoogle ScholarPubMed
Bacon, F. [1620] (2000). The New Organon. Jardine, L. & Silverthorne, M. (Eds.). Cambridge University Press.Google Scholar
Baddeley, A., Allen, R. & Vargha-Khadem, F. (2010). Is the hippocampus necessary for visual and verbal binding in working memory? Neuropsychologia, 48, 1089–1095.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D., Schacter, D. L. & Alpert, N. M. (2003). Priming of new associations: A PET study. Neuroreport, 14, 2475–2479.CrossRefGoogle ScholarPubMed
Bakker, A., Albert, M. S., Krauss, G., Speck, C. L. & Gallagher, M. (2015). Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage: Clinical, 7, 688–698.Google ScholarPubMed
Baldauf, D. & Desimone, R. (2014). Neural mechanisms of object-based attention. Science, 344, 424–427.CrossRefGoogle ScholarPubMed
Banks, S. J., Jones-Gotman, M., Ladowski, D. & Sziklas, V. (2012). Sex differences in the medial temporal lobe during encoding and recognition of pseudowords and abstract designs. NeuroImage, 59, 1888–1895.CrossRefGoogle ScholarPubMed
Bartels, A. & Zeki, S. (2000). The neural basis of romantic love. NeuroReport, 11, 3829–3834.CrossRefGoogle ScholarPubMed
Bartsch, T., Döhring, J., Rohr, A., Jansen, O. & Deuschl, G. (2011). CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proceedings of the National Academy of Sciences of the United States of America, 108, 17562–17567.Google ScholarPubMed
Bartsch, T., Schönfeld, R., Müller, F. J., Alfke, K., Leplow, B., Aldenhoff, J., Deuschl, G. & Koch, J. M. (2010). Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science, 328, 1412–1415.CrossRefGoogle ScholarPubMed
Baudry, M., Zhu, G., Liu, Y., Wang, Y., Briz, V. & Bi, X. (2015). Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Research, 1621, 73–81.CrossRefGoogle ScholarPubMed
Bear, M. F. & Abraham, W. C. (1996). Long-term depression in hippocampus. Annual Review of Neuroscience, 19, 437–462.CrossRefGoogle ScholarPubMed
Beck, D. M. (2010). The appeal of the brain in the popular press. Perspectives on Psychological Science, 5, 762–766.CrossRefGoogle ScholarPubMed
Benoit, R. G. & Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 76, 450–460.CrossRefGoogle ScholarPubMed
Bergmann, H. C., Rijpkema, M., Fernández, G. & Kessels, R. P. (2012). Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe. NeuroImage, 63, 989–997.CrossRefGoogle ScholarPubMed
Binder, J. R. (2011). Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy & Behavior, 20, 214–222.CrossRefGoogle ScholarPubMed
Blakemore, C. B. & Falconer, M. A. (1967). Long-term effects of anterior temporal lobectomy on certain cognitive functions. Journal of Neurology, Neurosurgery, & Psychiatry, 30, 364–367.CrossRefGoogle ScholarPubMed
Bliss, T. V. & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.CrossRefGoogle ScholarPubMed
Bliss, T. V. & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232, 331–356.Google ScholarPubMed
Bonnici, H. M., Chadwick, M. J., Lutti, A., Hassabis, D., Weiskopf, N. & Maguire, E. A. (2012). Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. The Journal of Neuroscience, 32, 16982–16991.CrossRefGoogle ScholarPubMed
Born, J. & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological Research, 76, 192–203.CrossRefGoogle ScholarPubMed
Bridger, E. K., Bader, R., Kriukova, O., Unger, K. & Mecklinger, A. (2012). The FN400 is functionally distinct from the N400. NeuroImage, 63, 1334–1342.CrossRefGoogle ScholarPubMed
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Johann Ambrosius Barth Verlag.Google Scholar
Brown, R. & Kulik, J. (1977). Flashbulb memories. Cognition, 5, 73–99.CrossRefGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefGoogle ScholarPubMed
Buckner, R. L., Bandettini, P. A., O'Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E. & Rosen, B. R. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 93, 14878–14883.Google ScholarPubMed
Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., Sheline, Y. I., Klunk, W. E., Mathis, C. A., Morris, J. C. & Mintun, M. A. (2005). Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory. The Journal of Neuroscience, 25, 7709–7717.CrossRefGoogle ScholarPubMed
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25, 1073–1188.CrossRefGoogle ScholarPubMed
Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. (2008). The parietal cortex and episodic memory: An attentional account. Nature Reviews Neuroscience, 9, 613–625.CrossRefGoogle Scholar
Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7, 477–484.CrossRefGoogle ScholarPubMed
Chaieb, L., Leszczynski, M., Axmacher, N., Höhne, M., Elger, C. E. & Fell, J. (2015). Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus. Cognitive Neuroscience, 6, 149–157.CrossRefGoogle ScholarPubMed
Chen, J. K., Johnston, K. M., Frey, S., Petrides, M., Worsley, K & Ptito, A. (2004). Functional abnormalities in symptomatic concussed athletes: An fMRI study. NeuroImage, 22, 68–82.CrossRefGoogle ScholarPubMed
Chun, M. M. & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.CrossRefGoogle ScholarPubMed
Chun, M. M. & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2, 844–847.CrossRefGoogle ScholarPubMed
Clayton, N. S. & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274.CrossRefGoogle ScholarPubMed
Cohen, D. & Cuffin, B. N. (1991). EEG versus MEG localization accuracy: Theory and experiment. Brain Topography, 4, 95–103.CrossRefGoogle ScholarPubMed
Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Science, 17, 5–6.CrossRefGoogle ScholarPubMed
Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.CrossRefGoogle Scholar
Cubelli, R. & Della Sala, S. (2008). Flashbulb memories: Special but not iconic. Cortex, 44, 908–909.CrossRefGoogle Scholar
Curran, T., Schacter, D. L., Johnson, M. K. & Spinks, R. (2001). Brain potentials reflect behavioral differences in true and false recognition. Journal of Cognitive Neuroscience, 13, 201–216.CrossRefGoogle ScholarPubMed
Curtis, C. E. & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415–423.CrossRefGoogle ScholarPubMed
Daselaar, S. M., Prince, S. E. & Cabeza, R. (2004). When less means more: Deactivations during encoding that predict subsequent memory. NeuroImage, 23, 921–927.CrossRefGoogle ScholarPubMed
Davachi, L., Mitchell, J. P. & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences of the United States of America, 100, 2157–2162.Google ScholarPubMed
Davidson, P. S., Cook, S. P., Glisky, E. L., Verfaellie, M. & Rapcsak, S. Z. (2005). Source memory in the real world: A neuropsychological study of flashbulb memory. Journal of Clinical and Experimental Neuropsychology, 27, 915–929.CrossRefGoogle ScholarPubMed
De Waal, F. (2016). Are We Smart Enough to Know How Smart Animals Are? New York: W. W. Norton & Company.Google Scholar
Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 17–22.CrossRefGoogle ScholarPubMed
Depue, B. E. (2012). A neuroanatomical model of prefrontal inhibitory modulation of memory retrieval. Neuroscience & Biobehavioral Reviews, 36, 1382–1399.CrossRefGoogle ScholarPubMed
Dettwiler, A., Murugavel, M., Putukian, M., Cubon, V., Furtado, J. & Osherson, D. (2014). Persistent differences in patterns of brain activation after sports-related concussion: A longitudinal functional magnetic resonance imaging study. Journal of Neurotrauma, 31, 180–188.CrossRefGoogle ScholarPubMed
Diana, R. A., Yonelinas, A. P. & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11, 379–386.CrossRefGoogle ScholarPubMed
Dickerson, B. C. & Sperling, R. A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: Insights from functional MRI studies. Neuropsychologia, 46, 1624–1635.CrossRefGoogle ScholarPubMed
Diedrichsen, J. & Kornysheva, K. (2015). Motor skill learning between selection and execution. Trends in Cognitive Sciences, 19, 227–233.CrossRefGoogle ScholarPubMed
Döhring, J., Schmuck, A. & Bartsch, T. (2014). Stress-related factors in the emergence of transient global amnesia with hippocampal lesions. Frontiers in Behavioral Neuroscience, 8, 287.Google ScholarPubMed
Domoto-Reilly, K., Sapolsky, D., Brickhouse, M. & Dickerson, B. C. (2012). Naming impairment in Alzheimer's disease is associated with left anterior temporal lobe atrophy. NeuroImage, 63, 348–355.CrossRefGoogle ScholarPubMed
Donders, F. C. (1868). Over de snelheid van psychische processen. Onderzoekingen gedaan in het Physiologisch Laboratorium der Utrechtsche Hoogeschool, 1868–1869, Tweede reeks, II, 92–120.Google Scholar
Duncan, K., Tompary, A. & Davachi, L. (2014). Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area CA1 pathways. The Journal of Neuroscience, 34, 11188–11198.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15, 732–744.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R. & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience & Biobehavioral Reviews, 36, 1597–1608.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.CrossRefGoogle ScholarPubMed
Einstein, A. [1905] (1952). On the electrodynamics of moving bodies. In Perrett, W. & Jeffery, G. B. (Trans.), The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (pp. 37–65). New York: Dover Publications.Google Scholar
Ekstrom, A. D., Copara, M. S., Isham, E. A., Wang, W. C. & Yonelinas, A. P. (2011). Dissociable networks involved in spatial and temporal order source retrieval. NeuroImage, 56, 1803–1813.CrossRefGoogle ScholarPubMed
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L. & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188.CrossRefGoogle ScholarPubMed
Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149–1152.CrossRefGoogle ScholarPubMed
Ellenbogen, J. M., Payne, J. D. & Stickgold, R. (2006). The role of sleep in declarative memory consolidation: Passive, permissive, active or none? Current Opinion in Neurobiology, 16, 716–722.CrossRefGoogle ScholarPubMed
Engel, A. K., Fries, P. & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.CrossRefGoogle ScholarPubMed
Engell, A. D. & McCarthy, G. (2014). Repetition suppression of face-selective evoked and induced EEG recorded from human cortex. Human Brain Mapping, 35, 4155–4162.CrossRefGoogle ScholarPubMed
Felleman, D. J. & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefGoogle ScholarPubMed
Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C. & Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 17510–17515.Google ScholarPubMed
Fiebach, C. J., Gruber, T. & Supp, G. G. (2005). Neuronal mechanisms of repetition priming in occipitotemporal cortex: Spatiotemporal evidence from functional magnetic resonance imaging and electroencephalography. The Journal of Neuroscience, 25, 3414–3422.CrossRefGoogle ScholarPubMed
Finke, C., Braun, M., Ostendorf, F., Lehmann, T. N., Hoffmann, K. T., Kopp, U. & Ploner, C. J. (2008). The human hippocampal formation mediates short-term memory of colour-location associations. Neuropsychologia, 46, 614–623.CrossRefGoogle ScholarPubMed
Floyer-Lea, A. & Matthews, P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94, 512–518.CrossRefGoogle Scholar
Friederici, A. D. & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23, 250–254.CrossRefGoogle ScholarPubMed
Friese, U., Köster, M., Hassler, U., Martens, U., Trujillo-Barreto, N. & Gruber, T. (2013). Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. NeuroImage, 66, 642–647.CrossRefGoogle ScholarPubMed
Frings, L., Wagner, K., Unterrainer, J., Spreer, J., Halsband, U. & Schulze-Bonhage, A. (2006). Gender-related differences in lateralization of hippocampal activation and cognitive strategy. Frontiers in Human Neuroscience, 7, 279.Google Scholar
Gabrieli, J. D., Poldrack, R. A. & Desmond, J. E. (1998). The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences of the United States of America, 95, 906–913.Google ScholarPubMed
Gagnepain, P., Henson, R. N. & Anderson, M. C. (2014). Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111, E1310–1319.Google ScholarPubMed
Gallagher, M. & Koh, M. T. (2011). Episodic memory on the path to Alzheimer's disease. Current Opinion in Neurobiology, 21, 929–934.CrossRefGoogle ScholarPubMed
Garoff-Eaton, R. J., Slotnick, S. D. & Schacter, D. L. (2006). Not all false memories are created equal: The neural basis of false recognition. Cerebral Cortex, 16, 1645–1652.Google ScholarPubMed
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16, 129–135.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S., Ivry, R. B. & Mangun, G. R. (2014). Cognitive Neuroscience: The Biology of the Mind (edn.). New York: W. W. Norton & Company.Google Scholar
Ghuman, A. S., Bar, M., Dobbins, I. G. & Schnyer, D. M. (2008). The effects of priming on frontal-temporal communication. Proceedings of the National Academy of Sciences of the United States of America, 105, 8405–8409.Google ScholarPubMed
Gilbert, J. R., Gotts, S. J., Carver, F. W. & Martin, A. (2010). Object repetition leads to local increases in the temporal coordination of neural responses. Frontiers in Human Neuroscience, 4, 30.Google ScholarPubMed
Girardeau, G. & Zugaro, M. (2011). Hippocampal ripples and memory consolidation. Current Opinion in Neurobiology, 21, 452–459.CrossRefGoogle ScholarPubMed
Glosser, G., Deutsch, G. K., Cole, L. C., Corwin, J. & Saykin, A. J. (1998). Differential lateralization of memory discrimination and response bias in temporal lobe epilepsy patients. Journal of the International Neuropsychological Society, 4, 502–511.CrossRefGoogle ScholarPubMed
Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S. Jr., Faraone, S. V. & Tsuang, M. T. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490–497.CrossRefGoogle ScholarPubMed
Gosselin, N., Bottari, C., Chen, J. K., Petrides, M., Tinawi, S., de Guise, E. & Ptito, A. (2011). Electrophysiology and functional MRI in post-acute mild traumatic brain injury. Journal of Neurotrauma, 28, 329–341.CrossRefGoogle ScholarPubMed
Gotts, S. J., Chow, C. C. & Martin, A. (2012). Repetition priming and repetition suppression: A case for enhanced efficiency through neural synchronization. Cognitive Neuroscience, 3, 227–237.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R. & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 14–23.CrossRefGoogle ScholarPubMed
Grubb, N. R., Fox, K. A., Smith, K., Best, J., Blane, A., Ebmeier, K. P., Glabus, M. F. & O'Carroll, R. E. (2000). Memory impairment in out-of-hospital cardiac arrest survivors is associated with global reduction in brain volume, not focal hippocampal injury. Stroke, 31, 1509–1514.CrossRefGoogle Scholar
Gruber, T. & Müller, M. M. (2005). Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cerebral Cortex, 15, 109–116.Google Scholar
Hannula, D. E. & Ranganath, C. (2008). Medial temporal lobe activity predicts successful relational memory binding. The Journal of Neuroscience, 28, 116–124.CrossRefGoogle ScholarPubMed
Hannula, D. E. & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63, 592–599.CrossRefGoogle ScholarPubMed
Harrison, S. A. & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632–635.CrossRefGoogle ScholarPubMed
Hart, B. L., Hart, L. A. & Pinter-Wollman, N. (2008). Large brains and cognition: Where do elephants fit in? Neuroscience & Biobehavioral Reviews, 32, 86–98.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L. & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.CrossRefGoogle ScholarPubMed
Helmholtz, H. (1850). Vorläufiger Bericht über die Fortpflanzungsgeschwindigkeit der Nervenreizung. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 71–73.Google Scholar
Henson, R., Shallice, T. & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287, 1269–1272.CrossRefGoogle ScholarPubMed
Herrmann, C. S., Rach, S., Neuling, T. & Strüber, D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279.CrossRefGoogle ScholarPubMed
Hirst, W., Phelps, E. A., Buckner, R. L., Budson, A. E., Cuc, A., Gabrieli, J. D., Johnson, M. K., Lustig, C., Lyle, K. B., Mather, M., Meksin, R., Mitchell, K. J., Ochsner, K. N., Schacter, D. L., Simons, J. S. & Vaidya, C. J. (2009). Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention. Journal of Experimental Psychology: General, 138, 161–176.Google ScholarPubMed
Hirst, W., Phelps, E. A., Meksin, R., Vaidya, C. J., Johnson, M. K., Mitchell, K. J., Buckner, R. L., Budson, A. E., Gabrieli, J. D., Lustig, C., Mather, M., Ochsner, K. N., Schacter, D., Simons, J. S., Lyle, K. B, Cuc, A. F. & Olsson, A. (2015). A ten-year follow-up of a study of memory for the attack of September 11, 2001: Flashbulb memories and memories for flashbulb events. Journal of Experimental Psychology: General, 144, 603–623.Google ScholarPubMed
Hodges, J. R. & Warlow, C. P. (1990). Syndromes of transient amnesia: Towards a classification. A study of 153 cases. Journal of Neurology, Neurosurgery, and Psychiatry, 53, 834–843.CrossRefGoogle ScholarPubMed
Hopfinger, J. B., Woldorff, M. G., Fletcher, E. M. & Mangun, G. R. (2001). Dissociating top-down attentional control from selective perception and action. Neuropsychologia, 39, 1277–1291.CrossRefGoogle ScholarPubMed
Hou, M., Safron, A., Paller, K. A. & Guo, C. (2013). Neural correlates of familiarity and conceptual fluency in a recognition test with ancient pictographic characters. Brain Research, 1518, 48–60.CrossRefGoogle Scholar
Hsieh, L. T., Ekstrom, A. D. & Ranganath, C. (2011). Neural oscillations associated with item and temporal order maintenance in working memory. The Journal of Neuroscience, 31, 10803–10810.CrossRefGoogle ScholarPubMed
Huettel, S. A., Song, A. W. & McCarthy, G. (2014). Functional Magnetic Resonance Imaging (edn.). Sunderland, MA: Sinauer Associates.Google Scholar
Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R. & Wagner, A. D. (2014). Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex, 24, 49–66.CrossRefGoogle ScholarPubMed
Ikkai, A. & Curtis, C. E. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49, 1428–1434.CrossRefGoogle ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 6829–6833.Google ScholarPubMed
James, W. (1890). The principles of psychology (Vol. I). New York: Dover Publications.Google Scholar
Ji, D. & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107.CrossRefGoogle ScholarPubMed
Johnson, J. D., Minton, B. R. & Rugg, M. D. (2008). Content dependence of the electrophysiological correlates of recollection. NeuroImage, 39, 406–416.CrossRefGoogle ScholarPubMed
Jolles, D. D., Grol, M. J., Van Buchem, M. A., Rombouts, S. A. & Crone, E. A. (2010). Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. NeuroImage, 52, 658–668.CrossRefGoogle ScholarPubMed
Jones-Gotman, M. (1986). Right hippocampal excision impairs learning and recall of a list of abstract designs. Neuropsychologia, 24, 659–670.CrossRefGoogle ScholarPubMed
Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America, 107, 11163–11170.Google ScholarPubMed
Kanwisher, N., McDermott, J. & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302–4311.CrossRefGoogle ScholarPubMed
Karanian, J. M. & Slotnick, S. D. (2014a). The cortical basis of true memory and false memory for motion. Neuropsychologia, 54, 53–58.CrossRefGoogle ScholarPubMed
Karanian, J. M. & Slotnick, S. D. (2014b). False memory for context activates the parahippocampal cortex. Cognitive Neuroscience, 5, 186–92.CrossRefGoogle ScholarPubMed
Karanian, J. M. & Slotnick, S. D. (2015). Memory for shape reactivates the lateral occipital complex. Brain Research, 1603, 124–132.CrossRefGoogle ScholarPubMed
Karanian, J. M. & Slotnick, S. D. (2016). False memories activate early sensory cortex. Manuscript submitted for publication.Google Scholar
Kemp, A. & Manahan-Vaughan, D. (2007). Hippocampal long-term depression: Master or minion in declarative memory processes? Trends in Neurosciences, 30, 111–118.CrossRefGoogle ScholarPubMed
Kiesel, A., Kunde, W., Pohl, C., Berner, M. P. & Hoffmann, J. (2009). Playing chess unconsciously. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 292–298.Google ScholarPubMed
Kim, H. (2011). Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. NeuroImage, 54, 2446–2461.CrossRefGoogle ScholarPubMed
Kim, H. & Cabeza, R. (2007). Differential contributions of prefrontal, medial temporal, and sensory-perceptual regions to true and false memory formation. Cerebral Cortex, 17, 2143–2150.CrossRefGoogle ScholarPubMed
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324.CrossRefGoogle ScholarPubMed
Knowlton, B. J. & Fanselow, M. S. (1998). The hippocampus, consolidation and on-line memory. Current Opinion in Neurobiology, 8, 293–296.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Ganis, G. & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2, 635–642.CrossRefGoogle ScholarPubMed
Köster, M., Friese, U., Schöne, B., Trujillo-Barreto, N. & Gruber, T. (2014). Theta-gamma coupling during episodic retrieval in the human EEG. Brain Research, 1577, 57–68.CrossRefGoogle ScholarPubMed
Koutstaal, W., Wagner, A. D., Rotte, M., Maril, A., Buckner, R. L. & Schacter, D. L. (2001). Perceptual specificity in visual object priming: Functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia, 39, 184–199.CrossRefGoogle ScholarPubMed
Kraus, B. J., Robinson, R. J., White, J. A., Eichenbaum, H. & Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron, 78, 1090–1101.CrossRefGoogle ScholarPubMed
Kremers, D., Jaramillo, M. B., Böye, M., Lemasson, A. & Hausberger, M. (2011). Do dolphins rehearse show-stimuli when at rest? Delayed matching of auditory memory. Frontiers in Psychology, 2, 386.CrossRefGoogle ScholarPubMed
Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O'Neil, J. P., Wilson, R. S. & Jagust, W. J. (2012). Association of lifetime cognitive engagement and low β-amyloid deposition. Archives of Neurology, 69, 623–629.Google ScholarPubMed
Larson, J., Wong, D. & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.CrossRefGoogle ScholarPubMed
Leal, S. L. & Yassa, M. A. (2013). Perturbations of neural circuitry in aging, mild cognitive impairment, and Alzheimer's disease. Ageing Research Reviews, 12, 823–831.CrossRefGoogle ScholarPubMed
LePort, A. K., Mattfeld, A. T., Dickinson-Anson, H., Fallon, J. H., Stark, C. E., Kruggel, F., Cahill, L. & McGaugh, J. L. (2012). Behavioral and neuroanatomical investigation of Highly Superior Autobiographical Memory (HSAM). Neurobiology of Learning and Memory, 98, 78–92.CrossRefGoogle Scholar
Li, X., Xiao, Y. H., Zhao, Q., Leung, A. W., Cheung, E. F. & Chan, R. C. (2015). The neuroplastic effect of working memory training in healthy volunteers and patients with schizophrenia: Implications for cognitive rehabilitation. Neuropsychologia, 75, 149–162.CrossRefGoogle ScholarPubMed
Liang, K. Y., Mintun, M. A., Fagan, A. M., Goate, A. M., Bugg, J. M., Holtzman, D. M., Morris, J. C. & Head, D. (2010). Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Annals of Neurology, 68, 311–318.CrossRefGoogle ScholarPubMed
Libby, L. A., Hannula, D. E. & Ranganath, C. (2014). Medial temporal lobe coding of item and spatial information during relational binding in working memory. The Journal of Neuroscience, 34, 14233–14242.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Liu, T., Slotnick, S. D., Serences, J. T. & Yantis, S. (2003). Cortical mechanisms of feature-based attentional control. Cerebral Cortex, 13, 1334–1343.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefGoogle ScholarPubMed
Ma, L., Wang, B., Narayana, S., Hazeltine, E., Chen, X., Robin, D. A., Fox, P. T. & Xiong, J. (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Research, 1318, 64–76.CrossRefGoogle ScholarPubMed
MacDonald, C. J., Carrow, S., Place, R. & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. The Journal of Neuroscience, 33, 14607–14616.CrossRefGoogle ScholarPubMed
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.Google ScholarPubMed
Maguire, E. A., Valentine, E. R., Wilding, J. M. & Kapur, N. (2003). Routes to remembering: The brains behind superior memory. Nature Neuroscience, 6, 90–95.CrossRefGoogle ScholarPubMed
Maguire, E. A., Woollett, K. & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16, 1091–1101.CrossRefGoogle ScholarPubMed
Malmivuo, J. (2012). Comparison of the properties of EEG and MEG in detecting the electric activity of the brain. Brain Topography, 25, 1–19.CrossRefGoogle ScholarPubMed
Manns, J. R. & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16, 795–808.CrossRefGoogle ScholarPubMed
Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G. & Squire, L. R. (2003). Recognition memory and the human hippocampus. Neuron, 37, 171–180.CrossRefGoogle ScholarPubMed
Marshall, L. & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11, 442–450.CrossRefGoogle ScholarPubMed
Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444, 610–613.CrossRefGoogle ScholarPubMed
Martin, A. & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11, 194–201.CrossRefGoogle ScholarPubMed
Matsumura, N., Nishijo, H., Tamura, R., Eifuku, S., Endo, S. & Ono, T. (1999). Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. The Journal of Neuroscience, 19, 2381–2393.CrossRefGoogle ScholarPubMed
Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459–512.Google Scholar
Mayer, A. R., Bellgowan, P. S. & Hanlon, F. M. (2015). Functional magnetic resonance imaging of mild traumatic brain injury. Neuroscience & Biobehavioral Reviews, 49, 8–18.CrossRefGoogle ScholarPubMed
McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C. & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14, 1004–1012.CrossRefGoogle ScholarPubMed
McDonald, B. C., Saykin, A. J. & McAllister, T. W. (2012). Functional MRI of mild traumatic brain injury (mTBI): Progress and perspectives from the first decade of studies. Brain Imaging and Behavior, 6, 193–207.CrossRefGoogle ScholarPubMed
Mercado, E., Murray, S. O., Uyeyama, R. K., Pack, A. A. & Herman, L. M. (1998). Memory for recent actions in the bottlenosed dolphin (Tursiops truncates): Repetition of arbitrary behaviors using an abstract rule. Animal Learning & Behavior, 26, 210–218.CrossRefGoogle Scholar
Metternich, B., Wagner, K., Schulze-Bonhage, A., Buschmann, F. & McCarthy, R. A. (2013). Flashbulb memories in patients with temporal lobe epilepsy. Epilepsy & Behavior, 28, 71–77.CrossRefGoogle ScholarPubMed
Mez, J., Stern, R. A. & McKee, A. C. (2013). Chronic traumatic encephalopathy: Where are we and where are we going? Current Neurology and Neuroscience Reports, 13, 407.CrossRefGoogle ScholarPubMed
Mickley Steinmetz, K. R., Schmidt, K., Zucker, H. R. & Kensinger, E. A. (2012). The effect of emotional arousal and retention delay on subsequent-memory effects. Cognitive Neuroscience, 3, 150–159.CrossRefGoogle ScholarPubMed
Miller, E. K., Freedman, D. J. & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357, 1123–1136.CrossRefGoogle ScholarPubMed
Milner, B. (1968). Disorders of memory after brain lesions in man. Neuropsychologia, 6, 175–179.Google Scholar
Mitchell, K. J. & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135, 638–677.CrossRefGoogle ScholarPubMed
Nadel, L. & Bohbot, V. (2001). Consolidation of memory. Hippocampus, 11, 56–60.3.0.CO;2-O>CrossRefGoogle Scholar
Nadel, L. & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217–227.CrossRefGoogle ScholarPubMed
Naghavi, H. R. & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, 14, 390–425.CrossRefGoogle ScholarPubMed
Nakada, T., Kwee, I. L., Fujii, Y. & Knight, R. T. (2005). High-field, T2 reversed MRI of the hippocampus in transient global amnesia. Neurology, 64, 1170–1174.CrossRefGoogle ScholarPubMed
Naya, Y. & Suzuki, W. A. (2011). Integrating what and when across the primate medial temporal lobe. Science, 333, 773–776.CrossRefGoogle ScholarPubMed
Nunez, P. L. & Srinivasan, R. (2005). Electric Fields of the Brain: The Neurophysis of EEG (edn.). New York: Oxford University Press.Google Scholar
O'Keefe, J. & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.CrossRefGoogle ScholarPubMed
Olesen, P. J., Westerberg, H. & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.CrossRefGoogle ScholarPubMed
O'Neill, J., Pleydell-Bouverie, B., Dupret, D. & Csicsvari, J. (2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33, 220–229.Google ScholarPubMed
Otten, L. J. & Rugg, M. D. (2001). When more means less: Neural activity related to unsuccessful memory encoding. Current Biology, 11, 1528–1530.CrossRefGoogle ScholarPubMed
Paller, K. A., Voss, J. L. & Boehm, S. G. (2007). Validating neural correlates of familiarity. Trends in Cognitive Sciences, 11, 243–250.CrossRefGoogle Scholar
Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321, 1322–1327.CrossRefGoogle ScholarPubMed
Patzke, N., Olaleye, O., Haagensen, M., Hof, P. R., Ihunwo, A. O. & Manger, P. R. (2014). Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Structure and Function, 219, 1587–1601.CrossRefGoogle ScholarPubMed
Payne, J. D. (2010). Memory consolidation, the diurnal rhythm of cortisol, and the nature of dreams: A new hypothesis. International Review of Neurobiology, 92, 101–134.Google ScholarPubMed
Pearson, J., Naselaris, T., Holmes, E. A. & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19, 590–602.CrossRefGoogle ScholarPubMed
Penhune, V. B. & Doyon, J. (2002). Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. The Journal of Neuroscience, 22, 1397–1406.CrossRefGoogle ScholarPubMed
Penolazzi, B., Stramaccia, D. F., Braga, M., Mondini, S. & Galfano, G. (2014). Human memory retrieval and inhibitory control in the brain: Beyond correlational evidence. The Journal of Neuroscience, 34, 6606–6610.CrossRefGoogle ScholarPubMed
Pessoa, L. & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773–783.CrossRefGoogle Scholar
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198–202.CrossRefGoogle ScholarPubMed
Platt, J. R. (1964). Strong inference. Science, 146, 347–353.CrossRefGoogle ScholarPubMed
Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25.CrossRefGoogle ScholarPubMed
Pratte, M. S. & Tong, F. (2014). Spatial specificity of working memory representations in the early visual cortex. Journal of Vision, 14(3):22, 1–12.CrossRefGoogle ScholarPubMed
Preston, A. R. & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23, R764–773.CrossRefGoogle ScholarPubMed
Preston, A. R. & Gabrieli, J. D. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cerebral Cortex, 18, 2192–2207.CrossRefGoogle ScholarPubMed
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335–359.CrossRefGoogle ScholarPubMed
Purpura, D. P. & McMurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166–185.CrossRefGoogle ScholarPubMed
Qin, Y. L., McNaughton, B. L., Skaggs, W. E. & Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352, 1525–1533.CrossRefGoogle ScholarPubMed
Quinette, P., Guillery-Girard, B., Dayan, J., de la Sayette, V., Marquis, S., Viader, F., Desgranges, B. & Eustache, F. (2006). What does transient global amnesia really mean? Review of the literature and thorough study of 142 cases. Brain, 129, 1640–1658.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Martinez-Gonzalez, D., Roth, T. C., & Pravosudov, V. V. (2011). Hippocampal memory consolidation during sleep: A comparison of mammals and birds. Biological Reviews of the Cambridge Philosophical Society, 86, 658–691.CrossRefGoogle ScholarPubMed
Raz, A., Packard, M. G., Alexander, G. M., Buhle, J. T., Zhu, H., Yu, S. & Peterson, B. S. (2009). A slice of pi: An exploratory neuroimaging study of digit encoding and retrieval in a superior memorist. Neurocase, 15, 361–372.CrossRefGoogle Scholar
Reiman, E. M. & Jagust, W. J. (2012). Brain imaging in the study of Alzheimer's disease. NeuroImage, 61, 505–516.CrossRefGoogle Scholar
Roediger, H. L. & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803–814.Google Scholar
Ross, R. S. & Slotnick, S. D. (2008). The hippocampus is preferentially associated with memory for spatial context. Journal of Cognitive Neuroscience, 20, 432–446.CrossRefGoogle ScholarPubMed
Roux, F. & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Science, 18, 16–25.CrossRefGoogle ScholarPubMed
Roux, F., Wibral, M., Mohr, H. M., Singer, W. & Uhlhaas, P. J. (2012). Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. The Journal of Neuroscience, 32, 12411–12420.CrossRefGoogle ScholarPubMed
Rudoy, J. D., Voss, J. L., Westerberg, C. E. & Paller, K. A. (2009). Strengthening individual memories by reactivating them during sleep. Science, 326, 1079.CrossRefGoogle ScholarPubMed
Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., Rees, G., Josephs, O., Deichmann, R. & Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16, 1479–1488.CrossRefGoogle ScholarPubMed
Rugg, M. D. & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11, 251–257.CrossRefGoogle ScholarPubMed
Rugg, M. D. & Vilberg, K. L. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23, 255–260.CrossRefGoogle ScholarPubMed
Sala, J. B., Rämä, P. & Courtney, S. M. (2003). Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory. Neuropsychologia, 41, 341–356.CrossRefGoogle ScholarPubMed
Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., Glennon, M., Gerloff, C., Birbaumer, N. & Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19, 1846–1852.CrossRefGoogle ScholarPubMed
Schacter, D. L. (1999). The seven sins of memory. Insights from psychology and cognitive neuroscience. American Psychologist, 54, 182–203.CrossRefGoogle ScholarPubMed
Schacter, D. L. & Loftus, E. F. (2013). Memory and law: What can cognitive neuroscience contribute? Nature Neuroscience, 16, 119–123.CrossRefGoogle ScholarPubMed
Schacter, D. L. & Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron, 44, 149–160.CrossRefGoogle ScholarPubMed
Schacter, D. L., Dobbins, I. G. & Schnyer, D. M. (2004). Specificity of priming: A cognitive neuroscience perspective. Nature Reviews Neuroscience, 5, 853–862.CrossRefGoogle ScholarPubMed
Schacter, D. L., Guerin, S. A. & St Jacques, P. L. (2011). Memory distortion: An adaptive perspective. Trends in Cognitive Sciences, 15, 467–474.CrossRefGoogle Scholar
Schacter, D. L., Wig, G. S. & Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology, 17, 171–176.CrossRefGoogle ScholarPubMed
Scoville, W. B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, & Psychiatry, 20, 11–21.CrossRefGoogle ScholarPubMed
Serences, J. T., Ester, E. F., Vogel, E. K. & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20, 207–214.CrossRefGoogle ScholarPubMed
Sharot, T., Martorella, E. A., Delgado, M. R. & Phelps, E. A. (2007). How personal experience modulates the neural circuitry of memories of September 11. Proceedings of the National Academy of Sciences of the United States of America, 104, 389–394.Google ScholarPubMed
Shin, Y. I., Foerster, Á. & Nitsche, M. A. (2015). Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia, 74, 74–95.CrossRefGoogle ScholarPubMed
Shrager, Y., Kirwan, C. B. & Squire, L. R. (2008). Activity in both hippocampus and perirhinal cortex predicts the memory strength of subsequently remembered information. Neuron, 59, 547–553.CrossRefGoogle ScholarPubMed
Simmons, W. K., Reddish, M., Bellgowan, P. S. & Martin, A. (2010). The selectivity and functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20, 813–825.CrossRefGoogle ScholarPubMed
Skipper, L. M., Ross, L. A. & Olson, I. R. (2011). Sensory and semantic category subdivisions within the anterior temporal lobes. Neuropsychologia, 49, 3419–3429.CrossRefGoogle ScholarPubMed
Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B. & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: A functional MRI study. Experimental Brain Research, 202, 341–354.CrossRefGoogle ScholarPubMed
Slotnick, S. D. (2004a). Source localization of ERP generators. In Handy, T. C. (ed.), Event-Related Potentials: A Methods Handbook (pp. 149–166). Cambridge, MA: The MIT Press.Google Scholar
Slotnick, S. D. (2004b). Visual memory and visual perception recruit common neural substrates. Behavioral and Cognitive Neuroscience Reviews, 3, 207–221.CrossRefGoogle ScholarPubMed
Slotnick, S. D. (2009a). Memory for color reactivates color processing region. NeuroReport, 20, 1568–1571.CrossRefGoogle ScholarPubMed
Slotnick, S. D. (2009b). Rapid retinotopic reactivation during spatial memory. Brain Research, 1268, 97–111.CrossRefGoogle ScholarPubMed
Slotnick, S. D. (2010a). Does the hippocampus mediate objective binding or subjective remembering? NeuroImage, 49, 1769–1776.CrossRefGoogle ScholarPubMed
Slotnick, S. D. (2010b). Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location. Brain Research, 1330, 89–100.CrossRefGoogle ScholarPubMed
Slotnick, S. D. (2013a). Controversies in Cognitive Neuroscience. Basingstoke, UK: Palgrave Macmillan.CrossRefGoogle Scholar
Slotnick, S. D. (2013b). The nature of recollection in behavior and the brain. NeuroReport, 24, 663–670.CrossRefGoogle ScholarPubMed
Slotnick, S. D. & Dodson, C. S. (2005). Support for a continuous (single-process) model of recognition memory and source memory. Memory & Cognition, 33, 151–170.CrossRefGoogle ScholarPubMed
Slotnick, S. D. & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7, 664–672.CrossRefGoogle ScholarPubMed
Slotnick, S. D. & Schacter, D. L. (2006). The nature of memory related activity in early visual areas. Neuropsychologia, 44, 2874–2886.CrossRefGoogle ScholarPubMed
Slotnick, S. D. & Schacter, D. L. (2007). The cognitive neuroscience of memory and consciousness. In Zelazo, P. D., Moscovitch, M. & Thompson, E. (Eds.), Cambridge Handbook of Consciousness (pp. 809–827). New York: Cambridge University Press.Google Scholar
Slotnick, S. D. & Thakral, P. P. (2011). Memory for motion and spatial location is mediated by contralateral and ipsilateral motion processing cortex. NeuroImage, 55, 794–800.CrossRefGoogle ScholarPubMed
Slotnick, S. D. & White, R. C. (2013). The fusiform face area responds equivalently to faces and abstract shapes in the left and central visual fields. NeuroImage, 83, 408–17.CrossRefGoogle ScholarPubMed
Slotnick, S. D., Schwarzbach, J. & Yantis, S. (2003). Attentional inhibition of visual processing in human striate and extrastriate cortex. NeuroImage, 19, 1602–1611.CrossRefGoogle ScholarPubMed
Slotnick, S. D., Moo, L. R., Kraut, M. A., Lesser, R. P. & Hart, J. Jr. (2002). Interactions between thalamic and cortical rhythms during semantic memory recall in human. Proceedings of the National Academy of Sciences of the United States of America, 99, 6440–6443.Google ScholarPubMed
Slotnick, S. D., Moo, L. R., Segal, J. B. & Hart, J. Jr. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17, 75–82.CrossRefGoogle ScholarPubMed
Slotnick, S. D., Thompson, W. L. & Kosslyn, S. M. (2005). Visual mental imagery induces retinotopically organized activation of early visual areas. Cerebral Cortex, 15, 1570–1583.CrossRefGoogle ScholarPubMed
Slotnick, S. D., Thompson, W. L. & Kosslyn, S. M. (2012). Visual memory and visual mental imagery recruit common control and sensory regions of the brain. Cognitive Neuroscience, 3, 14–20.CrossRefGoogle ScholarPubMed
Smith, C. N. & Squire, L. R. (2009). Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. The Journal of Neuroscience, 29, 930–938.CrossRefGoogle ScholarPubMed
Spaniol, J., Davidson, P. S., Kim, A. S., Han, H., Moscovitch, M. & Grady, C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia, 47, 1765–1779.CrossRefGoogle ScholarPubMed
Špinka, M., Duncan, I. J. H. & Widowski, T. M. (1998). Do domestic pigs prefer short-term to medium-term confinement? Applied Animal Behavior Science, 58, 221–232.CrossRefGoogle Scholar
Sprague, T. C., Ester, E. F. & Serences, J. T. (2014). Reconstructions of information in visual spatial working memory degrade with memory load. Current Biology, 24, 2174–2180.CrossRefGoogle ScholarPubMed
Spurzheim, J. G. (1827). Outlines of Phrenology; Being also a Manual of Reference for the Marked Busts. London, England: Treuttel, Wurtz, & Richter.Google Scholar
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.Google ScholarPubMed
Squire, L. R., Wixted, J. T. & Clark, R. E. (2007). Recognition memory and the medial temporal lobe: A new perspective. Nature Reviews Neuroscience, 8, 872–883.CrossRefGoogle ScholarPubMed
Sreenivasan, K. K., Vytlacil, J. & D'Esposito, M. (2014). Distributed and dynamic storage of working memory stimulus information in extrastriate cortex. Journal of Cognitive Neuroscience, 26, 1141–1153.CrossRefGoogle ScholarPubMed
Staudigl, T., Hanslmayr, S. & Bäuml, K. H. (2010). Theta oscillations reflect the dynamics of interference in episodic memory retrieval. The Journal of Neuroscience, 30, 11356–11362.CrossRefGoogle ScholarPubMed
Steele, C. J. & Penhune, V. B. (2010). Specific increases within global decreases: A functional magnetic resonance imaging investigation of five days of motor sequence learning. The Journal of Neuroscience, 30, 8332–8341.CrossRefGoogle ScholarPubMed
Stickgold, R. & Walker, M. P. (2005). Memory consolidation and reconsolidation: What is the role of sleep? Trends in Neurosciences, 28, 408–415.CrossRefGoogle Scholar
Stoub, T. R., deToledo-Morrell, L., Stebbins, G. T., Leurgans, S., Bennett, D. A. & Shah, R. C. (2006). Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 10041–10045.Google ScholarPubMed
Suddendorf, T. & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 30, 299–313.CrossRefGoogle ScholarPubMed
Suthana, N. A., Parikshak, N. N., Ekstrom, A. D., Ison, M. J., Knowlton, B. J., Bookheimer, S. Y. & Fried, I. (2015). Specific responses of human hippocampal neurons are associated with better memory. Proceedings of the National Academy of Sciences of the United States of America, 112, 10503–10508.Google ScholarPubMed
Sweeney-Reed, C. M., Zaehle, T., Voges, J., Schmitt, F. C., Buentjen, L., Kopitzki, K., Esslinger, C., Hinrichs, H., Heinze, H. J., Knight, R. T. & Richardson-Klavehn, A. (2014). Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation. Elife, 3, e05352.CrossRefGoogle ScholarPubMed
Thakral, P. P. & Slotnick, S. D. (2009). The role of parietal cortex during sustained visual spatial attention. Brain Research, 1302, 157–166.CrossRefGoogle ScholarPubMed
Thakral, P. P. & Slotnick, S. D. (2013). The role of spatial attention during spatial encoding. Cognitive Neuroscience, 4, 73–80.CrossRefGoogle ScholarPubMed
Thakral, P. P., Jacobs, C. M. & Slotnick, S. D. (forthcoming). An attention account of neural priming. Memory. Google Scholar
Tromp, D., Dufour, A., Lithfous, S., Pebayle, T. & Després, O. (2015). Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 24, 232–262.CrossRefGoogle ScholarPubMed
Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26, 1–12.CrossRefGoogle Scholar
Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In Terrace, H. S. & Metcalfe, J. (Eds.), The Missing Link in Cognition: Origins of Self-Reflective Consciousness (pp. 3–56). New York: Oxford University Press.Google Scholar
Uncapher, M. R. & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory, 91, 139–154.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., Doyon, J. & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78, 553–564.CrossRefGoogle ScholarPubMed
Uttal, W. R. (2003). The New Phrenology. Cambridge, MA: The MIT Press.Google Scholar
van de Ven, V., Jacobs, C. M. & Sack, A. T. (2012). Topographic contribution of early visual cortex to short-term memory consolidation: A transcranial magnetic stimulation study. The Journal of Neuroscience, 32, 4–11.CrossRefGoogle ScholarPubMed
van Wyhe, J. (2004). Phrenology and the Origins of Victorian Scientific Naturalism. Aldershot, England: Ashgate Publishing Limited.Google Scholar
Vigneau, M., Beaucousin, V., Hervé, P. Y., Duffau, H., Crivello, F., Houdé, O., Mazoyer, B. & Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage, 30, 1414–1432.CrossRefGoogle ScholarPubMed
Vilberg, K. L. & Rugg, M. D. (2009). Functional significance of retrieval-related activity in lateral parietal cortex: Evidence from fMRI and ERPs. Human Brain Mapping, 30, 1490–1501.CrossRefGoogle ScholarPubMed
Vilberg, K. L., Moosavi, R. F. & Rugg, M. D. (2006). The relationship between electrophysiological correlates of recollection and amount of information retrieved. Brain Research, 1122, 161–170.CrossRefGoogle ScholarPubMed
Voss, J. L., Schendan, H. E. & Paller, K. A. (2010). Finding meaning in novel geometric shapes influences electrophysiological correlates of repetition and dissociates perceptual and conceptual priming. NeuroImage, 49, 2879–2889.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Henson, R. N., Driver, J. & Dolan, R. J. (2002). Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nature Neuroscience, 5, 491–499.CrossRefGoogle ScholarPubMed
Wagner, A. D. & Davachi, L. (2001). Cognitive neuroscience: Forgetting of things past. Current Biology, 11, R964–967.CrossRefGoogle ScholarPubMed
Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453.CrossRefGoogle ScholarPubMed
Waldhauser, G. T., Johansson, M. & Hanslmayr, S. (2012). Alpha/beta oscillations indicate inhibition of interfering visual memories. The Journal of Neuroscience, 32, 1953–1961.CrossRefGoogle ScholarPubMed
Weiner, K. S., Sayres, R., Vinberg, J. & Grill-Spector, K. (2010). fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. Journal of Neurophysiology, 103, 3349–3365.CrossRefGoogle ScholarPubMed
Wheeler, M. E. & Buckner, R. L. (2003). Functional dissociation among components of remembering: Control, perceived oldness, and content. The Journal of Neuroscience, 23, 3869–3880.CrossRefGoogle ScholarPubMed
Wheeler, M. E. & Buckner, R. L. (2004). Functional-anatomic correlates of remembering and knowing. NeuroImage, 21, 1337–1349.CrossRefGoogle ScholarPubMed
Wheeler, M. E., Petersen, S. E. & Buckner, R. L. (2000). Memory's echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 11125–11129.Google ScholarPubMed
Wig, G. S., Grafton, S. T., Demos, K. E. & Kelley, W. M. (2005). Reductions in neural activity underlie behavioral components of repetition priming. Nature Neuroscience, 8, 1228–1233.CrossRefGoogle ScholarPubMed
Willment, K. C. & Golby, A. (2013). Hemispheric lateralization interrupted: Material-specific memory deficits in temporal lobe epilepsy. Frontiers in Human Neuroscience, 7, 546.CrossRefGoogle ScholarPubMed
Wimber, M., Alink, A., Charest, I., Kriegeskorte, N. & Anderson, M. C. (2015). Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nature Neuroscience, 18, 582–589.CrossRefGoogle ScholarPubMed
Wimber, M., Bäuml, K. H., Bergström, Z., Markopoulos, G., Heinze, H. J. & Richardson-Klavehn, A. (2008). Neural markers of inhibition in human memory retrieval. The Journal of Neuroscience, 28, 13419–13427.CrossRefGoogle ScholarPubMed
Winocur, G. & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766–780.CrossRefGoogle ScholarPubMed
Winters, B. D., Saksida, L. M. & Bussey, T. J. (2008). Object recognition memory: Neurobiological mechanisms of encoding, consolidation and retrieval. Neuroscience & Biobehavioral Reviews, 32, 1055–1070.CrossRefGoogle ScholarPubMed
Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological Review, 114, 152–176.CrossRefGoogle ScholarPubMed
Woollams, A. M., Taylor, J. R., Karayanidis, F. & Henson, R. N. (2008). Event-related potentials associated with masked priming of test cues reveal multiple potential contributions to recognition memory. Journal of Cognitive Neuroscience, 20, 1114–1129.CrossRefGoogle ScholarPubMed
Woollett, K., Spiers, H. J. & Maguire, E. A. (2009). Talent in the taxi: A model system for exploring expertise. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1407–1416.Google Scholar
Woroch, B. & Gonsalves, B. D. (2010). Event-related potential correlates of item and source memory strength. Brain Research, 1317, 180–191.CrossRefGoogle ScholarPubMed
Yang, Y., Kim, S. & Kim, J. H. (2008). Ischemic evidence of transient global amnesia: Location of the lesion in the hippocampus. Journal of Clinical Neurology, 4, 59–66.CrossRefGoogle ScholarPubMed
Yassa, M. A., Stark, S. M., Bakker, A., Albert, M. S., Gallagher, M. & Stark, C. E. (2010). High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. NeuroImage, 51, 1242–52.CrossRefGoogle ScholarPubMed
Young, K. D., Bellgowan, P. S., Bodurka, J. & Drevets, W. C. (2013). Functional neuroimaging of sex differences in autobiographical memory recall. Human Brain Mapping, 34, 3320–3332.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Scott D. Slotnick, Boston College, Massachusetts
  • Book: Cognitive Neuroscience of Memory
  • Online publication: 28 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781316026687.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Scott D. Slotnick, Boston College, Massachusetts
  • Book: Cognitive Neuroscience of Memory
  • Online publication: 28 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781316026687.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Scott D. Slotnick, Boston College, Massachusetts
  • Book: Cognitive Neuroscience of Memory
  • Online publication: 28 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781316026687.014
Available formats
×