Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-t6jsk Total loading time: 0 Render date: 2024-04-30T08:14:29.668Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2015

Simeon Ball
Affiliation:
Universitat Politècnica de Catalunya, Barcelona
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, A. A. (1960), Finite division algebras and finite planes, in Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., pp. 53–70.Google Scholar
Albert, A. A. & Sandler, R. (1968), An Introduction to Finite Projective Planes, Holt, Rinehart and Winston, New York-Toronto, Ont.-London.Google Scholar
Alderson, T. L. & Gács, A. (2009), ‘On the maximality of linear codes’, Des. Codes Cryptogr. 53(1), 59–68.CrossRefGoogle Scholar
Alon, N., Rónyai, L. & Szabó, T. (1999), ‘Norm-graphs: variations and applications’, J. Combin. Theory Ser. B 76(2), 280–290.CrossRefGoogle Scholar
André, J. (1954), ‘Uber nicht-Desarguessche Ebenen mit transitiver Translations- gruppe’, Math. Z. 60, 156–186.CrossRefGoogle Scholar
Atiyah, M. F. & Macdonald, I. G. (1969), Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.Google Scholar
Ball, S. (2003), ‘The number of directions determined by a function over a finite field’, J. Combin. Theory Ser. A 104(2), 341–350.CrossRefGoogle Scholar
Ball, S. (2012), ‘On sets of vectors of a finite vector space in which every subset of basis size is a basis’, J. Eur. Math. Soc. (JEMS) 14(3), 733–748.Google Scholar
Ball, S. & Blokhuis, A. (1998), ‘An easier proof of the maximal arcs conjecture’, Proc. Amer. Math. Soc. 126(11), 3377–3380.CrossRefGoogle Scholar
Ball, S., Blokhuis, A. & Mazzocca, F. (1997), ‘Maximal arcs in Desarguesian planes of odd order do not exist’, Combinatorica 17(1), 31–41.CrossRefGoogle Scholar
Ball, S. & De Beule, J. (2012), ‘On sets of vectors of a finite vector space in which every subset of basis size is a basis II’, Des. Codes Cryptogr. 65(1–2), 5–14.CrossRefGoogle Scholar
Ball, S., Ebert, G. & Lavrauw, M. (2007), ‘A geometric construction of finite semi-fields’, J. Algebra 311(1), 117–129.CrossRefGoogle Scholar
Ball, S. & Gács, A. (2009), ‘On the graph of a function over a prime field whose small powers have bounded degree’, European J. Combin. 30(7), 1575–1584.CrossRefGoogle Scholar
Ball, S. & Pepe, V. (2012), ‘Asymptotic improvements to the lower bound of certain bipartite Turan numbers’, Combin. Probab. Comput. 21(3), 323–329.CrossRefGoogle Scholar
Ball, S. & Zieve, M. (2004), Symplectic spreads and permutation polynomials, in Finite Fields and Applications, Vol. 2948 of Lecture Notes in Comput. Sci., Springer, Berlin pp. 79–88.Google Scholar
Barlotti, A. (1955), ‘Un'estensione del teoremadi Segre-Kustaanheimo’, Boll. Un. Mat. Ital. (3) 10, 498–506.Google Scholar
Barwick, S. & Ebert, G. (2008), Unitals in Projective Planes, Springer Monographs in Mathematics, Springer, New York.Google Scholar
Bennett, M. K. (1995), Affine and Projective Geometry, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.CrossRefGoogle Scholar
Berlekamp, E. R. (1968), Algebraic Coding Theory, McGraw-Hill Book Co., New York-Toronto|Ont.-London.Google Scholar
Beth, T., Jungnickel, D. & Lenz, H. (1999a), Design Theory. Vol. I, Vol.69 of Encyclopedia of Mathematics and its Applications, second edn, Cambridge University Press, Cambridge.Google Scholar
Beth, T., Jungnickel, D. & Lenz, H. (1999b), Design theory. Vol. II, Vol.78 of Encyclopedia of Mathematics and its Applications, second edn, Cambridge University Press, Cambridge.Google Scholar
Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A. & Wassermann, A. (2006), Error-Correcting Linear Codes, Vol. 18 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin.Google Scholar
Beutelspacher, A. & Rosenbaum, U. (1998), Projective Geometry: From Foundations to Applications, Cambridge University Press, Cambridge.Google Scholar
Bierbrauer, J. (2005), Introduction to Coding Theory, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
Bierbrauer, J. (2009), New commutative semifields and their nuclei, in Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Vol. 5527 of Lecture Notes in Comput. Sci., Springer, Berlin, pp. 179–185.
Bierbrauer, J. (2010), ‘New semifields, PN and APN functions’, Des. Codes Cryptogr. 54(3), 189–200.CrossRefGoogle Scholar
Bierbrauer, J. (2011), ‘Commutative semifields from projection mappings’, Des. Codes Cryptogr. 61(2), 187–196.CrossRefGoogle Scholar
Biggs, N. (1993), Algebraic Graph Theory, Cambridge Mathematical Library, second edn, Cambridge University Press, Cambridge.Google Scholar
Biggs, N. L. & White, A. T. (1979), Permutation Groups and Combinatorial Structures, Vol. 33 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge-New York.CrossRefGoogle Scholar
Biliotti, M., Jha, V. & Johnson, N. L. (2001), Foundations of Translation Planes, Vol. 243 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York.Google Scholar
Biliotti, M. & Montinaro, A. (2013), ‘On PGL(2, q)-invariant unitals embedded in Desarguesian or in Hughes planes’, Finite Fields Appl. 24, 66–87.CrossRefGoogle Scholar
Blokhuis, A. (1994), ‘On the size of a blocking set in PG(2,p)’, Combinatorica 14(1), 111–114.CrossRefGoogle Scholar
Blokhuis, A., Ball, S., Brouwer, A. E., Storme, L. & Szőcnyi, T. (1999), ‘On the number of slopes of the graph of a function defined on a finite field’, J. Combin. Theory Ser. A 86(1), 187–196.CrossRefGoogle Scholar
Blokhuis, A., Bruen, A. A. & Thas, J. A. (1988), ‘On M.D.S. codes, arcs in PG(n, q) with q even, and a solution of three fundamental problems of B. Segre’, Invent. Math. 92(3), 441–459.Google Scholar
Blokhuis, A., Bruen, A. & Thas, J. A. (1990), ‘Arcs in PG(n, q), MDS-codes and three fundamental problems of B. Segre - some extensions’, Geom. Dedicata 35(1-3), 1–11.CrossRefGoogle Scholar
Blokhuis, A., De Boeck, M., Mazzocca, F. & Storme, L. (2014), ‘The Kakeya problem: a gap in the spectrum and classification of the smallest examples’, Des. Codes Cryptogr. 72(1), 21–31.CrossRefGoogle Scholar
Blokhuis, A. & Mazzocca, F. (2008), The finite field Kakeya problem, in Building bridges, Vol. 19 of Bolyai Soc. Math. Stud., Springer, Berlin, pp. 205–218.Google Scholar
Bollobás, B. (1998), Modern Graph Theory, Vol. 184 of Graduate Texts in Mathematics, Springer-Verlag, New York.CrossRefGoogle Scholar
Bollobás, B. (2004), Extremal Graph Theory, Dover Publications., Inc., Mineola, NY.Google Scholar
Bombieri, E. (1987), ‘Le grand crible dans la theorie analytique des nombres’, Asterisque (18), 103.Google Scholar
Bondy, J. A. & Murty, U. S. R. (2008), Graph Theory, Vol. 244 of Graduate Texts in Mathematics, Springer, New York.Google Scholar
Bondy, J. A. & Simonovits, M. (1974), ‘Cycles of even length in graphs’, J. Combinatorial Theory Ser. B 16, 97–105.CrossRefGoogle Scholar
Bose, R. C., Shrikhande, S. S. & Parker, E. T. (1960), ʿFurther results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture”, Canad. J. Math. 12, 189–203.CrossRefGoogle Scholar
Brouwer, A. E. (1985), ‘Some new two-weight codes and strongly regular graphs’, Discrete Appl. Math. 10(1), 111–114.CrossRefGoogle Scholar
Brouwer, A. E. & van Lint, J. H. (1984), Strongly regular graphs and partial geometries, in Enumeration and Design (Waterloo, Ont., 1982), Academic Press, Toronto, ON, pp. 85–122.
Brown, M. R. (2000a), ‘The determination of ovoids of PG(3, q) containing a pointed conic’, J. Geom. 67(1–2), 61–72.CrossRefGoogle Scholar
Brown, M. R. (2000b), ‘Ovoids of PG(3, q), q even, with a conic section’, J. London Math. Soc. (2) 62(2), 569–582.CrossRefGoogle Scholar
Brown, W. G. (1966), ‘On graphs that do not contain a Thomsen graph’, Canad. Math. Bull. 9, 281–285.CrossRefGoogle Scholar
Bruck, R. H. & Bose, R. C. (1964), ‘The construction of translation planes from projective spaces’, J. Algebra 1, 85–102.CrossRefGoogle Scholar
Bruck, R. H. & Ryser, H. J. (1949), ‘The nonexistence of certain finite projective plane’, Canad. J. Math. 1, 88–93.CrossRefGoogle Scholar
Budaghyan, L. & Helleseth, T. (2011), ‘New commutative semifields defined by new PN multinomials’, Cryptogr. Commun. 3(1), 1–16.CrossRefGoogle Scholar
Buekenhout, F. (1976), ‘Existence of unitals in finite translation planes of order q2 with akerneloforder q’, Geometriae Dedicata 5(2), 189–194.CrossRefGoogle Scholar
Buekenhout, F., ed. (1995), Handbook of Incidence Geometry, North-Holland, Amsterdam.Google Scholar
Bush, K. A. (1952), ‘Orthogonal arrays of index unity’, Ann. Math. Statistics 23, 426–434.CrossRefGoogle Scholar
Calderbank, R. & Kantor, W. M. (1986), ‘The geometry of two-weight codes’, Bull. London Math. Soc. 18(2), 97–122.CrossRefGoogle Scholar
Cameron, P. J. (1994), Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cameron, P. J. (1999), Permutation Groups, Vol. 45 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cameron, P. J. (2000), Projective and Polar Spaces, Vol.13 of QMW Maths Notes, Queen Mary and Westfield College School of Mathematical Sciences, London.Google Scholar
Cameron, P. J. & van Lint, J. H. (1975), Graph Theory, Coding Theory and Block Designs, London Mathematical Society Lecture Note Series, No. 19, Cambridge University Press, Cambridge-New York-Melbourne.CrossRefGoogle Scholar
Cameron, P. J. & van Lint, J. H. (1991), Designs, Graphs, Codes and their Links, Vol. 22 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cardinali, I. & De Bruyn, B. (2013), ‘Spin-embeddings, two-intersection sets and two-weight codes’, Ars Combin. 109, 309–319.Google Scholar
Carlitz, L. (1954), ‘Invariant theory of systems of equations in a finite field’, J. Analyse Math. 3, 382–413.Google Scholar
Casse, R. (2006), Projective Geometry: An Introduction, Oxford University Press, Oxford.Google Scholar
Caullery, F. & Schmidt, K. -U. (2014), ‘On the classification of hyperovals’, arXiv:1403.2880v2.
Cherowitzo, W. (1998), ‘α-flocks and hyperovals’, Geom. Dedicata 72(3), 221–246.CrossRefGoogle Scholar
Cherowitzo, W. E., O‘Keefe, C. M. & Penttila, T. (2003), 'A unified construction of finite geometries associated with q-clans in characteristic 2’, Adv. Geom. 3(1), 1–21.CrossRefGoogle Scholar
Cherowitzo, W., Penttila, T., Pinneri, I. & Royle, G. F. (1996), ‘Flocks and ovals’, Geom. Dedicata 60(1), 17–37.CrossRefGoogle Scholar
Cohen, S. D. & Ganley, M. J. (1982), ‘Commutative semifields, two-dimensional over their middle nuclei’, J. Algebra 75(2), 373–385.CrossRefGoogle Scholar
Combarro, E. F., Rua, I. F. & Ranilla, J. (2012), ‘Finite semifields with 74 elements’, Int. J. Comput. Math. 89(13–14), 1865–1878.CrossRefGoogle Scholar
Cossidente, A. (2010), ‘Embeddings of Un(q2) and symmetric strongly regular graphs’, J. Combin. Des. 18(4), 248–253.Google Scholar
Cossidente, A., Durante, N., Marino, G., Penttila, T. & Siciliano, A. (2008), ‘The geometry of some two-character sets’, Des. Codes Cryptogr. 46(2), 231–241.CrossRefGoogle Scholar
Cossidente, A., Ebert, G. L. & Korchmaros, G. (2001), ‘Unitals in finite Desarguesian planes’, J. Algebraic Combin. 14(2), 119–125.CrossRefGoogle Scholar
Cossidente, A. & King, O. H. (2010), ‘Some two-character sets’, Des. Codes Cryptogr. 56(2–3), 105–113.CrossRefGoogle Scholar
Cossidente, A. & Korchmáros, G. (1998), ‘The algebraic envelope associated to a complete arc’, Rend. Circ. Mat. Palermo (2) Suppl. (51), 9–24.Google Scholar
Cossidente, A. & Marino, G. (2007), ‘Veronese embedding and two-character sets’, Des. Codes Cryptogr. 42(1), 103–107.Google Scholar
Cossidente, A. & Penttila, T. (2013), ‘Two-character sets arising fromgluings oforbits’, Graphs Combin. 29(3), 399–406.CrossRefGoogle Scholar
Cossidente, A. & Van Maldeghem, H. (2007), ‘The simple exceptional group G2(q), q even, and two-character sets’, J. Combin. Theory Ser. A 114(5), 964–969.Google Scholar
Coxeter, H. S. M. (1994), Projective Geometry, <Springer-Verlag, New York. Revised reprint of the second (1974) edition.
De Clerck, F., De Winter, S. & Maes, T. (2012), ‘Partial flocks of the quadratic cone yielding Mathon maximal arcs’, Discrete Math. 312(16), 2421–2428.CrossRefGoogle Scholar
De Clerck, F. & Delanote, M. (2000), ‘Two-weight codes, partial geometries and Steiner systems’, Des. Codes Cryptogr. 21(1–3), 87–98.CrossRefGoogle Scholar
De Wispelaere, A. & Van Maldeghem, H. (2008), ‘Some new two-character sets in PG(5, q2) and a distance-2 ovoid in the generalized hexagon H(4)’, Discrete Math. 308(14), 2976–2983.CrossRefGoogle Scholar
Delsarte, P. (1972), ‘Weights of linear codes and strongly regular normed spaces’, Discrete Math. 3, 47–64.CrossRefGoogle Scholar
Dembowski, P. (1997), Finite Geometries, Classics in Mathematics, Springer-Verlag, Berlin. Reprint of the 1968 original.Google Scholar
Dembowski, P. & Hughes, D. R. (1965), ‘On finite inversive planes’, J. London Math. Soc. 40, 171–182.Google Scholar
Dempwolff, U. (2008), ‘Semifield planes of order 81’, J. Geom. 89(1–2), 1–16.Google Scholar
Dempwolff, U. & Müller, P. (2013), ‘Permutation polynomials and translation planes of even order’, Adv. Geom. 13(2), 293–313.CrossRefGoogle Scholar
Denniston, R. H. F. (1969), ‘Some maximal arcs in finite projective planes’, J. Combin. Theory 6, 317–319.CrossRefGoogle Scholar
Dickson, L. E. (1896/97), ‘The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group’, Ann. ofMath. 11(1–6), 65–120.Google Scholar
Dickson, L. E. (1906), ‘Linear algebras in which division is always uniquely possible’, Trans. Amer. Math. Soc. 7(3), 370–390.Google Scholar
Diestel, R. (2005), Graph Theory, Vol. 173 of Graduate Texts in Mathematics, third edn, Springer-Verlag, Berlin.Google Scholar
Dirac, G. A. (1952), ‘Some theorems on abstract graphs’, Proc. London Math. Soc. (3)2, 69–81.Google Scholar
Dixon, J. D. & Mortimer, B. (1996), Permutation Groups, Vol. 163 of Graduate Texts in Mathematics, Springer-Verlag, New York.CrossRefGoogle Scholar
Donati, G. & Durante, N. (2012), ‘A group theoretic characterization of classical unitals’, J. Algebraic Combin. 36(1), 33–43.CrossRefGoogle Scholar
Donati, G., Durante, N. & Siciliano, A. (2014), ‘On unitals in PG(2, q2) stabilized by a homology group’, Des. Codes Cryptogr. 72(1), 135–139.CrossRefGoogle Scholar
Dvir, Z. (2009), ‘On the size of Kakeya sets in finite fields’, J. Amer. Math. Soc. 22(4), 1093–1097.Google Scholar
Dvir, Z., Kopparty, S., Saraf, S. & Sudan, M. (2013), ‘Extensions to the method of multiplicities, with applications to Kakeya sets and mergers’, SIAM J. Comput. 42(6), 2305–2328.CrossRefGoogle Scholar
Ellenberg, J. & Hablicsek, M. (2014), ‘An incidence conjecture of Bourgain over fields of positive characteristic’, arXiv:1311.1479v1.
Erdős, P. (1959), ‘Graph theory and probability’, Canad. J. Math. 11, 34–38.CrossRefGoogle Scholar
Erdös, P. & Stone, A. H. (1946), ‘On the structure of linear graphs’, Bull. Amer. Math. Soc. 52, 1087–1091.CrossRefGoogle Scholar
Feit, W. & Higman, G. (1964), ‘The nonexistence of certain generalized polygons’, J. Algebra 1, 114–131.CrossRefGoogle Scholar
Frankl, P. (1990), ‘Intersection theorems and mod p rank of inclusion matrices’, J. Combin. Theory Ser. A 54(1), 85–94.CrossRefGoogle Scholar
Ftiredi, Z. (1996a), ‘New asymptotics for bipartite Turan numbers’, J. Combin. Theory Ser. A 75(1), 141–144.Google Scholar
Füredi, Z. (1996b), An upper bound on Zarankiewicz' problem, Combin. Probab. Comput. 5(1), 29–33.CrossRefGoogle Scholar
Gács, A. (2003), On a generalization of Rédei's theorem, Combinatorica 23(4), 585–598.CrossRefGoogle Scholar
Glynn, D.G. (1983), Two new sequences of ovals in finite Desarguesian planes of even order, in Combinatorial Mathematics, X (Adelaide, 1982), Vol. 1036 of Lecture Notes in Math., Springer, Berlin, pp. 217–229.Google Scholar
Glynn, D.G. (1986), The nonclassical 10-arc of PG (4, 9), Discrete Math. 59(1-2), 43–51.CrossRefGoogle Scholar
Glynn, D.G. (1989), A condition for the existence of ovals in PG (2, q), q even, Geom. Dedicata 32(2), 247–252.CrossRefGoogle Scholar
Godsil, C. & Royle, G. (2001), Algebraic Graph Theory, Vol. 207 of Graduate Texts in Mathematics, Springer-Verlag, New York.CrossRefGoogle Scholar
Gould, .R (2012), Graph Theory, Dover Publications, Inc., Mineola, NY.Google Scholar
Gow, .R & Sheekey, .J (2011), On primitive elements in finite semifields, Finite Fields Appl. 17(2), 194–204.CrossRefGoogle Scholar
Graham, R.L., Grötschel, .M & Lovász, .L, eds. (1995), Handbook of Combinatorics. Vol. 1, 2, Elsevier Science B.V., Amsterdam; MIT Press, Cambridge, MA.
Gupta, .I, Narain, .L & Veni Madhavan, C.E. (2003), Cryptological applications of permutation polynomials, in Electronic Notes in Discrete Mathematics. Vol. 15, Vol. 15 of Electron. Notes Discrete Math., Elsevier, Amsterdam.p 93(electronic).CrossRefGoogle Scholar
Guth, .L & Katz, N.H. (2010), Algebraic methods in discrete analogs of the Kakeya problem, Adv. Math. 225(5), 2828–2839.CrossRefGoogle Scholar
Hamilton, .N (2002a), Degree 8 maximal arcs in PG (2, 2h), h odd, J. Combin. Theory Ser. A 100(2), 265–276.CrossRefGoogle Scholar
Hamilton, .N (2002b), Strongly regular graphs from differences of quadrics, Discrete Math. 256(1-2), 465–469.CrossRefGoogle Scholar
Hamilton, .N & Mathon, .R (2003), More maximal arcs in Desarguesian projective planes and their geometric structure, Adv. Geom. 3(3), 251–261.CrossRefGoogle Scholar
Hamilton, .N & Thas, J.A. (2006), Maximal arcs in PG (2, q) and partial flocks of the quadratic cone, Adv. Geom. 6(1), 39–51.CrossRefGoogle Scholar
Hill, .R (1986), A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York.Google Scholar
Hirschfeld, J.W.P. (1971), Rational curves on quadrics over finite fields of characteristic two, Rend. Mat. (6) 4, 773–795 (1972).Google Scholar
Hirschfeld, J.W.P. (1985), Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York.Google Scholar
Hirschfeld, J.W. P. (1998), Projective Geometries Over Finite Fields, Oxford Mathematical Monographs, second edn, The Clarendon Press Oxford University Press, New York.Google Scholar
Hirschfeld, J. W. P. & Korchmáros, .G (1996), On the embedding of an arc into a conic in a finite plane, Finite Fields Appl. 2(3), 274–292.CrossRefGoogle Scholar
Hirschfeld, J.W. P. & Storme, .L (2001), The packing problem in statistics, coding theory and finite projective spaces: update 2001, in Finite Geometries, Vol. 3 of Dev. Math., Kluwer Academic Publishers, Dordrecht, pp. 201–246.CrossRefGoogle Scholar
Hirschfeld, J.W. P. & Thas, J.A. (1991), General Galois Geometries, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York.Google Scholar
Hughes, D.R. & Piper, F.C. (1973), Projective Planes, Graduate Texts inMathematics, Vol. 6, Springer-Verlag, New York-Berlin.Google Scholar
Hughes, D.R. & Piper, F.C. (1988), Design Theory, second edn, Cambridge University Press, Cambridge.Google Scholar
Huxley, M.N. & Iwaniec, .H (1975), Bombieri's theorem in short intervals, Mathematika 22(2), 188–194.CrossRefGoogle Scholar
Johnson, N.L., Jha, .V & Biliotti, M (2007), Handbook of Finite Translation Planes, Vol. 289 of Pure and Applied Mathematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
Jones, G.A. & Jones, J.M. (2000), Information and Coding Theory, Springer Undergraduate Mathematics Series, Springer-Verlag London Ltd., London.CrossRefGoogle Scholar
Kantor, W.M. (1979), Classical Groups From a Nonclassical Viewpoint, Oxford University, Mathematical Institute, Oxford.Google Scholar
Kantor, W.M. (2006), Finite semifields, in Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH & Co. KG, Berlin, pp. 103–114.Google Scholar
Knarr, .N (1995), Translation Planes, Vol. 1611 of Lecture Notes in Mathematics, Springer-Verlag, Berlin. Foundations and construction principles.CrossRefGoogle Scholar
Knuth, D.E. (1965), Finite semifields and projective planes, J. Algebra 2, 182–217.CrossRefGoogle Scholar
Kollár, .J, Rónyai, .L & Szabó, T. (1996), Norm-graphs and bipartite Turán numbers, Combinatorica 16(3), 399–406.CrossRefGoogle Scholar
Kövari, .T, Sós, V.T. & Turán, .P (1954), On a problem of K. Zarankiewicz, Colloquium Math. 3, 50–57.Google Scholar
Laigle-Chapuy, .Y (2007), Permutation polynomials and applications to coding theory, Finite Fields Appl. 13(1), 58–70.CrossRefGoogle Scholar
Lam, C.W.H., Thiel, .L & Swiercz, .S (1989), The nonexistence of finite projective planes of order 10, Canad. J. Math. 41(6), 1117–1123.CrossRefGoogle Scholar
Lander, E.S. (1983), Symmetric Designs: an Algebraic Approach, Vol. 74 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lang, .S (1965), Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass.Google Scholar
Lavrauw, .M & Sheekey, .J (2013), Semifields from skew polynomial rings, Adv. Geom. 13(4), 583–604.CrossRefGoogle Scholar
Lazebnik, .F, Ustimenko, V.A. & Woldar, A.J. (1999), Polarities and 2k-cycle-free graphs, Discrete Math. 197/198, 503–513.CrossRefGoogle Scholar
Levine, .J & Chandler, .R (1987), Some further cryptographic applications of permutation polynomials, Cryptologia 11(4), 211–218.CrossRefGoogle Scholar
Lidl, .R (1985), On cryptosystems based on polynomials and finite fields, in Advances in Cryptology (Paris, 1984), Vol. 209 of Lecture Notes in Comput. Sci., Springer, Berlin, pp. 10–15.Google Scholar
Lidl, .R & Müller, W.B. (1984a), A note on polynomials and functions in algebraic cryptography, Ars Combin. 17(A), 223–229.Google Scholar
Lidl, .R & Müller, W.B. (1984b), Permutation polynomials in RSA-cryptosystems, in Advances in Cryptology (Santa Barbara, Calif., 1983), Plenum, New York, pp. 293–301.Google Scholar
Lidl, .R & Niederreiter, .H (1997), Finite Fields, Vol. 20 of Encyclopedia of Mathematics and its Applications, second edn, Cambridge University Press, Cambridge.Google Scholar
Lindner, C.C. & Rodger, C.A. (2009), Design Theory, Discrete Mathematics and its Applications (Boca Raton), second edn, CRC Press, Boca Raton, FL.Google Scholar
Ling, .S & Xing, .C (2004), Coding Theory, A First Course, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lunardon, .G (1999), Normal spreads, Geom. Dedicata 75(3), 245–261.CrossRefGoogle Scholar
Lüneburg, .H (1980), Translation Planes, Springer-Verlag, Berlin-New York.CrossRefGoogle Scholar
Mac Lane, .S & Birkhoff, .G (1967), Algebra, The Macmillan Co., New York.Google Scholar
MacWilliams, F.J. & Sloane, N.J.A. (1977), The Theory of Error-Correcting Codes. I, North-Holland Publishing Co., Amsterdam.Google Scholar
Marino, .G, Polverino, .O & Trombetti, .R (2007), On Fq-linear sets of PG (3, q3) and semifields, J. Combin. Theory Ser. A 114(5), 769–788.CrossRefGoogle Scholar
Masuda, A.M. & Zieve, M.E. (2009), Permutation binomials over finite fields, Trans. Amer. Math. Soc. 361(8), 4169–4180.CrossRefGoogle Scholar
Mathon, .R (2002), New maximal arcs in Desarguesian planes, J. Combin. Theory Ser. A 97(2), 353–368.CrossRefGoogle Scholar
McEliece, R.J. (2004), The Theory of Information and Coding, Vol. 86 of Encyclopedia of Mathematics and its Applications, student edn, Cambridge University Press, Cambridge.Google Scholar
Metz, .R (1979), On a class of unitals, Geom. Dedicata 8(1), 125–126.CrossRefGoogle Scholar
Mullen, G.L., ed. (2013), Handbook of Finite Fields, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL.CrossRef
O'Keefe, C.M. & Penttila, .T (1992), Ovoids of PG (3, 16) are elliptic quadrics. II, J. Geom. 44(1-2), 140–159.CrossRefGoogle Scholar
O'Keefe, C.M., Penttila, .T & Royle, G.F. (1994), Classification of ovoids in PG (3, 32), J. Geom. 50(1-2), 143–150.CrossRefGoogle Scholar
Ostrom, T.G. (1970), Finite Translation Planes, Lecture Notes in Mathematics, Vol. 158, Springer-Verlag, Berlin-New York.CrossRefGoogle Scholar
Oxley, J.G. (1992), Matroid Theory, Oxford Science Publications, The Clarendon Press Oxford University Press, New York.Google Scholar
Parker, E.T. (1959), Orthogonal latin squares, Proc. Nat. Acad. Sci. U.S.A. 45, 859–862.CrossRefGoogle ScholarPubMed
Pauley, .M & Bamberg, .J (2008), A construction of one-dimensional affine flagtransitive linear spaces, Finite Fields Appl. 14(2), 537–548.CrossRefGoogle Scholar
Payne, S.E. (1985), A new infinite family of generalized quadrangles, in Proceedings of the Sixteenth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Fla., 1985), Vol. 49, pp. 115–128.Google Scholar
Payne, S.E., Penttila, .T & Pinneri, .I (1995), Isomorphisms between Subiaco q-clan geometries, Bull. Belg. Math. Soc. Simon Stevin 2(2), 197–222.Google Scholar
Payne, S.E. & Thas, J.A. (1984), Finite Generalized Quadrangles, Vol. 110 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA.Google Scholar
Penttila, .T & Royle, G.F. (1995), Sets of type (m, n) in the affine and projective planes of order nine, Des. Codes Cryptogr. 6(3), 229–245.CrossRefGoogle Scholar
Penttila, .T & Williams, .B (2000), Ovoids of parabolic spaces, Geom. Dedicata 82(1-3), 1–19.CrossRefGoogle Scholar
Polverino, .O (2000), Small blocking sets in PG (2, p3), Des. Codes Cryptogr. 20(3), 319–324.CrossRefGoogle Scholar
Rédei, .L (1970), Lückenhafte Polynome über endlichen Körpern, Birkhäuser Verlag, Basel-Stuttgart.CrossRefGoogle Scholar
Reed, I.S. & Solomon, .G (1960), Polynomial codes over certain finite fields, J. Soc. Indust. Appl. Math. 8, 300–304.
Roman, .S (1997), Introduction to Coding and Information Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York.Google Scholar
Rúa, I.F., Combarro, E.F. & Ranilla, .J (2009), Classification of semifields of order 64, J. Algebra 322(11), 4011–4029.CrossRefGoogle Scholar
Rúa, I.F., Combarro, E.F. & Ranilla, .J (2012), Determination of division algebras with 243 elements, Finite Fields Appl. 18(6), 1148–1155.CrossRefGoogle Scholar
Schmidt, .B (2002), Characters and Cyclotomic Fields in Finite Geometry, Vol. 1797 of Lecture Notes in Mathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Schwartz, J.T. (1980), Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach. 27(4), 701–717.CrossRefGoogle Scholar
Segre, .B (1955), Ovals in a finite projective plane, Canad. J. Math. 7, 414–416.CrossRefGoogle Scholar
Segre, .B (1957), Sui k-archi nei piani finiti di caratteristica due, Rev. Math. Pures Appl. 2, 289–300.Google Scholar
Segre, .B (1962), Ovali e curve σ nei piani di Galois di caratteristica due., Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 32, 785–790.Google Scholar
Segre, .B (1967), Introduction to Galois geometries, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 8, 133–236.Google Scholar
Semple, J.G. & Kneebone, G.T. (1998), Algebraic Projective Geometry, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York. Reprint of the 1979 edition.Google Scholar
Shafarevich, I.R. (1994), Basic Algebraic Geometry. 1, second edn, Springer-Verlag, Berlin. Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.CrossRefGoogle Scholar
Sziklai, .P (2008), On small blocking sets and their linearity, J. Combin. Theory Ser. A 115(7), 1167–1182.CrossRefGoogle Scholar
Sziklai, .P & Van de Voorde, .G (2013), A small minimal blocking set in PG(n, pt), spanning a (t - 1)-space, is linear, Des. Codes Cryptogr. 68(1-3), 25–32.CrossRefGoogle Scholar
Szőonyi, .T (1997), Blocking sets in Desarguesian affine and projective planes, Finite Fields Appl. 3(3), 187–202.CrossRefGoogle Scholar
Taylor, D.E. (1992), The Geometry of the Classical Groups, Vol. 9 of Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin.Google Scholar
Thas, J.A. (1972), Ovoidal translation planes, Arch. Math. (Basel) 23, 110–112.CrossRefGoogle Scholar
Thas, J.A. (1974), Construction of maximal arcs and partial geometries, Geometriae Dedicata 3, 61–64.CrossRefGoogle Scholar
Tits, .J (1962), Ovoïdes et groupes de Suzuki, Arch. Math. 13, 187–198.CrossRefGoogle Scholar
van Lint, J.H. (1999), Introduction to Coding Theory, Vol. 86 of Graduate Texts in Mathematics, third edn, Springer-Verlag, Berlin.CrossRefGoogle Scholar
van Lint, J.H. & Wilson, R.M. (2001), A Course in Combinatorics, second edn, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Van Maldeghem, .H (1998), Generalized Polygons, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel.Google Scholar
Voloch, J.F. (1990), Arcs in projective planes over prime fields, J. Geom. 38(1-2), 198–200.CrossRefGoogle Scholar
Voloch, J.F. (1991), Complete arcs in Galois planes of nonsquare order, in Advances in Finite Geometries and Designs (Chelwood Gate, 1990), Oxford Science Publications, Oxford University Press, New York, pp. 401–406.Google Scholar
Voloshin, V.I. (2009), Introduction to Graph Theory, Nova Science Publishers, Inc., New York.Google Scholar
Wan, Z.X. (1993), Geometry of Classical Groups Over Finite Fields, Studentlitteratur, Lund; Chartwell-Bratt Ltd., Bromley.Google Scholar
Wan, .Z-X. (2009), Design Theory, Higher Education Press, Beijing; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.CrossRefGoogle Scholar
Weil, .A (1949), Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55, 497–508.CrossRefGoogle Scholar
Weiner, .Z (2004), On (k, pe)-arcs in Desarguesian planes, Finite Fields Appl. 10(3), 390–404.Google Scholar
Weyl, .H (1997), The Classical Groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ. Their invariants and representations, fifteenth printing, Princeton Paperbacks.Google Scholar
Wielandt, .H (1964), Finite Permutation Groups, Translated from the German by R. Bercov, Academic Press, New York–London.Google Scholar
Wilson, R.A. (2009), The Finite Simple Groups, Vol. 251 of Graduate Texts in Mathematics, Springer-Verlag London, Ltd, London.CrossRefGoogle Scholar
Wilson, R.M. (1990), A diagonal form for the incidence matrices of t-subsets vs. k-subsets, European J. Combin. 11(6), 609–615.CrossRefGoogle Scholar
Xambó-Descamps, .S (2003), Block Error-Correcting Codes, A Computational Primer, Universitext, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Zhou, .Y & Pott, .A (2013), A new family of semifields with 2 parameters, Adv. Math. 234, 43–60.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simeon Ball, Universitat Politècnica de Catalunya, Barcelona
  • Book: Finite Geometry and Combinatorial Applications
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316257449.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simeon Ball, Universitat Politècnica de Catalunya, Barcelona
  • Book: Finite Geometry and Combinatorial Applications
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316257449.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simeon Ball, Universitat Politècnica de Catalunya, Barcelona
  • Book: Finite Geometry and Combinatorial Applications
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316257449.012
Available formats
×