Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T20:12:59.342Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 May 2017

Christopher D. Sogge
Affiliation:
The Johns Hopkins University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arnold, V. I. Mathematical methods of classical mechanics, Springer-Verlag, Berlin, 1978.
[1] Avakumovič, V. G. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z. 65 (1956), 327–44.CrossRefGoogle Scholar
[1] Beals, M. Lp boundedness of Fourier integral, Mem. Amer.Math. Soc. 264 (1982).Google Scholar
[1] Beals, M., Fefferman, C., and Grossman, R. Strictly pseudoconvex domains in Cn, Notices Amer. Math. Soc. 8 (1983), 125–322.CrossRefGoogle Scholar
[1] Bennett, J., Carbery, A, and Tao, T. On the multilinear restriction and Kakeya conjectures, ActaMath. 196 (2006), 261–302.Google Scholar
[1] Bérard, P. Riesz means on Riemannian manifolds, Proc. Symp. Pure Math. XXXVI, American Mathematical Society, Providence, RI, 1980, pp. 1–12.
[2] Bérard, P. On the wave equation on a compact manifold without conjugate points, Math. Z. 155 (1977), 249–76.Google Scholar
[1] Besicovitch, A. S. Sur deux questions d'intégrabilité, J. Soc. Phys.Math. 2 (1919), 105–23.Google Scholar
[2] Besicovitch, A. S. The Kakeya problem, Amer. Math. Monthly 70 (1963), 697–706.Google Scholar
[1] Besse, A. Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin, 1978.
[1] Bonami, A., and Clerc, J. L. Sommes de Cesáro et multiplicateures des développements en harmonics sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–63.Google Scholar
[1] Bourgain, J. Averages in the plane over convex curves and maximal operators, J.Analyse Math. 47 (1986), 69–85.CrossRefGoogle Scholar
[2] Bourgain, J. Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), 147–87.CrossRefGoogle Scholar
[3] Bourgain, J. Lp estimates for oscillatory integrals in several variables, Geom. Funct. Anal. 1 (1991), 321–74.CrossRefGoogle Scholar
[4] Bourgain, J. On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal. 9 (1999), 256—282.CrossRef
[5] Bourgain, J. Harmonic analysis and combinatorics: How much may they contribute to each other?, Mathematics: Frontiers and Perspectives, IMU/Amer. Math. Soc., 2000, pp. 13–32.
[1] Bourgain, J., and Demeter, C. The proof of the ℓ 2 decoupling conjecture, Ann. Math. 182 (2015), 351–89.CrossRefGoogle Scholar
[1] Bourgain, J., and Guth, L. Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal. 21 (2011), 1239–95.Google Scholar
[1] Calderón A, P. Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math. 80 (1958), 16–36.CrossRefGoogle Scholar
[1] Calderón, A. P., and Zygmund, A. On the existence of certain singular integral operators, Acta Math. 88 (1952), 85–139.CrossRefGoogle Scholar
[1] Carbery, A. The boundedness of the maximal Bochner–Riesz operator on L4(R2), Duke Math. J. 50 (1983), 409–16.Google Scholar
[2] Carbery, A. Restriction implies Bochner–Riesz for paraboloids, Proc. Cambridge Phil. Soc. 111 (1992), 525–29.Google Scholar
[1] Carleson, L., and Sjölin, P. Oscillatory integrals and a multiplier problem for the disk, Studia Math. 44 (1972), 287–99.Google Scholar
[1] Christ, F. M. On the almost everywhere convergence of Bochner–Riesz means in higher dimensions, Proc. Amer. Math. Soc. 95 (1985), 16–20.CrossRefGoogle Scholar
[2] Christ, F. M. Estimates for the k-plane transform, Indiana Math. J. 33 (1984), 891–910.Google Scholar
[1] Christ, F. M., Duoandikoetxea, J., and Rubio de Francia, J. Maximal operators related to the Radon transform and the Calderón–Zygmund method of rotations, Duke Math. J. 53 (1986), 189–209.Google Scholar
[1] Christ, F. M., and Sogge, C. D. The weak type L1 convergence of eigenfunction expansions for pseudo-differential operators, Invent. Math. 94 (1988), 421–53.Google Scholar
[1] Coifman, R., and Weiss, G. Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.CrossRefGoogle Scholar
[1] Colin de Verdiére, Y., and Frisch, M. Régularité Lipschitzienne et solutions de l'équation des ondes sur une variété Riemannienne compacte, Ann. Scient. Ecole Norm. Sup. 9 (1976), 539–65.CrossRefGoogle Scholar
[1] Constantin, P., and Saut, J. Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413–46.CrossRefGoogle Scholar
[1] Córdoba, A. A note on Bochner–Riesz operators, Duke Math. J. 46 (1979), 505–11.Google Scholar
[2] Córdoba, A. Geometric Fourier analysis, Ann. Inst. Fourier 32 (1982), 215–26.Google Scholar
[1] Davies, E. B. Heat kernels and spectral theory, Cambridge University Press, Cambridge, 1989.
[2] Davies, E. B. Spectral properties of compact manifolds and changes of metric, Amer. J. Math. 21 (1990), 15–39.Google Scholar
[1] Davies, R. O. Some remarks on the Kakeya problem, Proc. Cambridge Phil. Soc. 69 (1971), 417–21.Google Scholar
[1] Do Carmo, M. Riemannian geometry, Birkhäuser, Basel, Boston, Berlin, 1992.
[1] Drury, S. Lp estimates for the x-ray transform, Illinois J. Math. 27 (1983), 125–29.Google Scholar
[1] Duistermaat, J. J. Fourier integral operators, Courant Institute of Mathematical Sciences, New York, 1973.
[1] Duistermaat, J. J., and Guillemin, V. W. The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39–79.CrossRefGoogle Scholar
[1] Egorov, Y. P. The canonical transformations of pseudo-differential operators (Russian), Uspehi Mat. Nauk 24,5 (149) (1969), 235–36.Google Scholar
[1] Eskin, G. I. Degenerate elliptic pseudo-differential operators of principal type (Russian), Mat. Sbornik 82 (124) (1970), 585–628; English translation, Math. USSR Sbornik 11 (1970), 539–82.CrossRefGoogle Scholar
[1] Falconer, K. J. The geometry of fractal sets, Cambridge University Press, Cambridge, 1985.
[1] Fefferman, C. Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36.CrossRefGoogle Scholar
[2] Fefferman, C. The multiplier problem for the ball, Ann. Math. 94 (1971), 330–6.Google Scholar
[3] Fefferman, C. A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52.CrossRefGoogle Scholar
[1] Fefferman, C., and Stein, E. M. Hp spaces of several variables, Acta Math. 129 (1972), 137–93.CrossRefGoogle Scholar
[1] Garcia-Cuerva, J., and Rubio de Francia, J, L. Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
[1] Garrigós, G., and Seeger, A. On plate decompositions of cone multipliers, Proc. Edinb. Math. Soc. 52 (2009), no. 3, 631–51.Google Scholar
[1] Gelfand, I. M., and Shilov, G. E. Generalized functions. Volume 1: Properties and operations, Academic Press, New York, 1964.
[1] Ginibre, J., and Velo, G. Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50–68.Google Scholar
[1] Greenleaf, A. Principal curvature and harmonic analysis, Indiana Math. J. 30 (1982), 519–37.Google Scholar
[1] Greenleaf, A., and Uhlmann, G. Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal. 89 (1990), 202–32.Google Scholar
[1] Grieser, D. Lp bounds for eigenfunctions and spectral projections of the Laplacian near a concave boundary. Thesis, UCLA, 1992.
[1] Guillemin, V., and Sternberg, S. Geometric asymptotics, Amer. Math. Soc. Surveys, Providence, RI, 1977.
[1] Hadamard, J. Lectures on Cauchy's problem in linear partial differential equations, Yale University Press, New Haven, CT, 1923.
[1] Hardy, G. H., and Littlewood J, E. Some properties of fractional integrals, I, Math. Z. 27 (1928), 565–606.CrossRefGoogle Scholar
[1] Hlawka, E. Über Integrale auf konvexen Körpern I, Monatsh. Math. 54 (1950), 1–36.Google Scholar
[1] Hörmander, L. Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93–140.CrossRefGoogle Scholar
[2] Hörmander, L. Pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 501–17.CrossRefGoogle Scholar
[3] Hörmander, L. On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, Some recent advances in the basic sciences, Yeshiva Univ., New York, 1966.
[4] Hörmander, L. The spectral function of an elliptic operator, ActaMath. 121 (1968), 193–218.Google Scholar
[5] Hörmander, L. Fourier integral operators I, Acta Math. 127 (1971), 79–183.CrossRefGoogle Scholar
[6] Hörmander, L. Oscillatory integrals and multipliers on FLp, Ark.Mat. 11 (1971), 1–11.CrossRefGoogle Scholar
[7] Hörmander, L. The analysis of linear partial differential operators Volumes I–IV, Springer-Verlag, Berlin, 1983, 1985.
[8] Hörmander, L. Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations 8 (1983), 21–64.Google Scholar
[9] Hörmander, L. On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math. 17 (1971), 99–163.Google Scholar
[1] Ivrii, V. The second term of the spectral asymptotics for a Laplace–Beltrami operator on manifolds with boundary (Russian), Funksional. Anal. i Prilozhen. 14 (1980) 25–34.Google Scholar
[1] Jerison, D. Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. Math. 63 (1986), 118–34.CrossRef
[1] Jerison, D., and Kenig, C. E. Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. 121 (1985), 463–94.CrossRefGoogle Scholar
[1] John, F. Plane waves and spherical means applied to differential equations, Interscience, New York, 1955.
[1] Journé, J.-L., Soffer, A., and Sogge, C. D. Decay estimates for Schrödinger operators, Comm. Pure Appl. Math. 44 (1991), 573–604.Google Scholar
[1] Kakeya, S. Some problems on maximum and minimum regarding ovals, Tohoku Science Reports 6 (1917), 71–88.Google Scholar
[1] Kaneko, M., and Sunouchi, G. On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, TÔhoku Math. J. 37 (1985), 343–65.Google Scholar
[1] Kapitanskii, L. V. Norm estimates in Besov and Lizorkin–Triebel spaces for the solutions of second-order linear hyperbolic equations, J. SovietMath. 56 (1991), 2347–2389.Google Scholar
[2] Kapitanskii, L. V. The Cauchy problem for the semilinear wave equation. I. (Russian); translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsi 19, 76–104, 188 J. Soviet Math. 49 (1990), no. 5, 1166–1186.
[1] Kato, T. On the Cauchy problem for the (generalized) Kortweg-de Vries equation, Studies in Applied Math., Vol. 8, Academic Press, 1983, pp. 93–128.
[1] Katz, N., Laba, I., and Tao, T. An improved bound on theMinkowski dimension of Besicovitch sets in R3 Ann. Math. 152 (2000), 383–446.Google Scholar
[1] Katz, N., and Tao, T. Bounds on arithmetic projections, and applications to the Kakeya conjecture, Math. Res. Lett. 6 (1999), 625–630.CrossRefGoogle Scholar
[2] Katz, N., and Tao, T. New bounds for Kakeya problems, J. Anal. Math. 87 (2002), 231–63.CrossRefGoogle Scholar
[1] Keel, T., and Tao, T. Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–80.CrossRefGoogle Scholar
[1] Kenig, C. E., Ruiz, A., and Sogge, C. D. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), 329–48.Google Scholar
[1] Kenig, C. E., Stanton, R., and Tomas, P. Divergence of eigenfunction expansions, J. Funct. Anal. 46 (1982), 28–44.CrossRefGoogle Scholar
[1] Kohn, J. J., and Nirenberg, L. On the algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 269–305.CrossRefGoogle Scholar
[1] Laba, I., and Wolff, T. A local smoothing estimate in higher dimensions, Dedicated to the memory of Tom Wolff, J. Anal. Math. 88 (2002), 149–71.CrossRefGoogle Scholar
[1] Lax, P. D. On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl. Math. 8 (1955), 615–33.CrossRefGoogle Scholar
[2] Lax, P. D. Asymptotic solutions of oscillatory intitial value problems, Duke Math. J. 24 (1957), 627–46.Google Scholar
[1] Lee, S. Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces, J. Funct. Anal. 241 (2006), 56–98.CrossRefGoogle Scholar
[1] Lee, S., and Seeger, A. Lebesgue space estimates for a class of Fourier integral operators associated with wave propagation, Math. Nachr. 286 (2013), 743–55.Google Scholar
[1] Lee, S., and Vargas, A. On the cone multiplier in R3, J. Funct. Anal. 263 (2012), 925–40.CrossRefGoogle Scholar
[1] Levitan, B. M. On the asymptotic behavior of the spectral function of a self-adjoint differential equation of second order, Isv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 325–52.Google Scholar
[1] Lindblad, H., and Sogge, C. D. On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426.Google Scholar
[1] Littman, W. Lp → Lq estimates for singular integral operators, Proc. Symp. Pure Appl. Math. Amer. Math. Soc. 23 (1973), 479–81.CrossRefGoogle Scholar
[1] Marcinkiewicz, J. Sur l'interpolation d'operations, C. R. Acad. Sci. 208 (1939), 1272–73.Google Scholar
[2] Marcinkiewicz, J. Sur les muliplicateurs dés series de Fourier, Studia Math. 8 (1939), 78–91.CrossRef
[1] Maslov, V. P. Théorie des perturbations et méthodes asymptotiques, French translation, Dunod, Paris, 1972.
[1] Miao, C., Yang, J., and Zheng, J. On Wolff 's L52 -Kakeya maximal inequality in R3, Forum Math. 27 (2015), 3053–77.Google Scholar
[1] Mihlin, S. G. Multidimensional singular integrals and integral equations, Internat. Series of Monographs in Pure and Applied Math., Volume 83, Pergamon Press, Elmsford, NY, 1965.
[1] Minicozzi, W. H., and Sogge, C. D. Negative results for Nikodym maximal functions and related oscillatory integrals in curved space, Math. Res. Lett. 4 (1997), 221–37.CrossRefGoogle Scholar
[1] Miyachi, A. On some estimates for the wave equation in Lp and Hp, J. Fac. Sci. Tokyo 27 (1980), 331–54.Google Scholar
[1] Mockenhaupt, G., Seeger, A., and Sogge, C. D. Wave front sets, local smoothing and Bourgain's circular maximal theorem, Ann. Math. 136 (1992), 207–18.CrossRefGoogle Scholar
[2] Mockenhaupt, G., Seeger, A., and Sogge, C. D. Local smoothing of Fourier integral operators and Carleson–Sjölin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65–130.Google Scholar
[1] Nikodym, O. Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles, Fund. Math. 10 (1927), 116–68.Google Scholar
[1] Oberlin, D. Convolution estimates for some distributions with singularities on the light cone, Duke Math. J. 59 (1989), 747–58.Google Scholar
[1] Oberlin, D., and Stein, E. M. Mapping properties of the Radon transform, Indiana Math. J. 31 (1982), 641–50.Google Scholar
[1] Pan, Y., and Sogge, C. D. Oscillatory integrals associated to folding canonical relations, Colloquium Mathematicum 60 (1990), 413–19.Google Scholar
[1] Peral, J. Lp estimates for the wave equation, J. Funct. Anal. 36 (1980), 114–45.Google Scholar
[1] Phong, D. H., and Stein, E. M. Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99–157.CrossRefGoogle Scholar
[1] Riesz, M. Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires, Acta Math. 49 (1926), 465–97.CrossRefGoogle Scholar
[2] Riesz, M. L'intégrale de Reimann-Liouville et le probléme de Cauchy, Acta Math. 81 (1949), 1–223.CrossRefGoogle Scholar
[1] Safarov, V. G. Asymptotics of a spectral function of a positive elliptic operator without a nontrapping condition, (Russian) Funktsional. Anal. i Prilozhen. 22 (1988) 53–65, 96; translation in Funct. Anal. Appl. 22 (1989), 213–23Google Scholar
[1] Sato, M. Hyperfunctions and partial differential equations, Proc. Int. Conf. on Funct. Anal. and Rel. Topics, Tokyo University Press (1969), 91–94.
[1] Sawyer, E. Unique continuation for Schrödinger operators in dimensions three or less, Ann. Inst. Fourier (Grenoble) 33 (1984), 189–200.Google Scholar
[1] Seeger, A., and Sogge, C. D. On the boundedness of functions of (pseudo)-differential operators on compact manifolds, Duke Math. J. 59 (1989), 709–36.Google Scholar
[2] Seeger, A., and Sogge, C. D. Bounds for eigenfunctions of differential operators, Indiana Math. J. 38 (1989), 669–82.CrossRefGoogle Scholar
[1] Seeger, A., Sogge, C. D., and Stein, E. M. Regularity properties of Fourier integral operators, Ann. Math. 134 (1991), 231–51.CrossRefGoogle Scholar
[1] Seeley, R. T. Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781–809.CrossRefGoogle Scholar
[2] Seeley, R. T. Complex powers of an elliptic operator, Proc. Symp. Pure Math. 10 (1968), 288–307.Google Scholar
[1] Sjölin, P. Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699–715.Google Scholar
[1] Sobolev, S. L. Sur un théorém d'analyse fonctionnelle (Russian; French summary), Mat. Sb. 46 (1938), 471–97.Google Scholar
[1] Sogge, C. D. Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), 43–65.CrossRefGoogle Scholar
[2] Sogge, C. D. Concerning the Lp norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123–34.CrossRefGoogle Scholar
[3] Sogge, C. D. On the convergence of Riesz means on compact manifolds, Ann. of Math. 126 (1987), 439–47.Google Scholar
[4] Sogge, C. D. Remarks on L2 restriction theorems for Riemannian manifolds, Analysis at Urbana 1, Cambridge University Press, Cambridge, 1989, pp. 416–22.
[5] Sogge, C. D. Oscillatory integrals and unique continuation for second order elliptic differential equations, J. Amer.Math. Soc. 2 (1989), 489–515.CrossRefGoogle Scholar
[6] Sogge, C. D. Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349–76.Google Scholar
[7] Sogge, C. D. Concerning Nikodym-type sets in 3-dimensional curved spaces, J. Amer. Math. Soc. 12 (1999), 1–31.CrossRef
[8] Sogge, C. D. Hangzhou lectures on eigenfunctions of the Laplacian, Princeton University Press, Princeton, NJ, 2014.
[1] Sogge, C. D., and Stein, E. M. Averages over hypersurfaces in Rn, Invent. Math. 82 (1985), 543–56.CrossRefGoogle Scholar
[2] Sogge, C. D., and Stein, E. M. Averages over hypersurfaces II, Invent. Math. 86 (1986), 233–42.Google Scholar
[3] Sogge, C. D., and Stein, E. M. Averages of functions over hypersurfaces: Smoothness of generalized Radon transforms, J. Analyse Math. 54 (1990), 165–88.Google Scholar
[1] Sogge, C. D., Toth, J. A., and Zelditch, S. About the blowup of quasimodes on Riemannian manifolds, J. Geom. Anal. 21 (2011) 150–73.CrossRefGoogle Scholar
[1] Sogge, C. D., and Zelditch, S. Riemannian manifolds with maximal eigenfunction growth, Duke Math. J. 114 (2002), 387–437.Google Scholar
[2] Sogge, C. D., and Zelditch, S. Focal points and sup-norms of eigenfunctions, Rev. Mat. Iberoam, 32 (2016), no. 3, 971–994.Google Scholar
[3] Sogge, C. D., and Zelditch, S. Focal points and sup-norms of eigenfunctions on Riemannian manifolds II: the two-dimensional case, Rev. Mat. Iberoam., 32 (2016), no. 3, 995–999.Google Scholar
[1] Stanton, R., and Weinstein, A. On the L4 norm of spherical harmonics, Math. Proc. Camb. Phil. Soc. 89 (1981), 343–58.Google Scholar
[1] Stein, E. M. Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–92.Google Scholar
[2] Stein, E. M. Singular integrals and differentiablity properties of functions, Princeton University Press, Princeton, NJ, 1970.
[3] Stein, E. M. Maximal functions: spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), 2174–5.Google Scholar
[4] Stein, E. M. Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis, Princeton University Press, Princeton, NJ, 1986, pp. 307–56.
[5] Stein, E. M. Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ 1993.
[1] Stein, E. M., and Shakarchi, R. Real analysis. Measure theory, integration, and Hilbert spaces. Princeton Lectures in Analysis, III, Princeton University Press, Princeton, NJ, 2005.
[1] Stein, E. M., and Wainger, S. Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239–95.Google Scholar
[1] Stein, E. M., and Weiss, G. Introduction to Fourier analysis on Euclidean spaces, Princeton University Press Princeton, NJ, 1971.
[1] Sternberg, S. Lectures on differential geometry, Chelsea, New York, 1964, 1983.
[1] Strichartz, R. A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218–35.Google Scholar
[2] Strichartz, R. A functional calculus for elliptic pseudo-differential operators, Amer. J. Math. 94 (1972), 711–22.Google Scholar
[3] Strichartz, R. Restriction of Fourier transform to quadratic surfaces, Duke Math. J. 44 (1977), 705–14.Google Scholar
[1] Sugimoto, M. On some Lp-estimates for hyperbolic operators, ArkivMat. 30 (1992), 149–63.Google Scholar
[1] Tao, T. Restriction theorems, Besicovitch sets and applications to PDE, unpublished lecture notes, 1999.
[2] Tao, T. The Bochner–Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999), 263–375.Google Scholar
[3] Tao, T. From rotating needles to stability of waves: Emerging connections between combinatorics, analysis, and PDE, Notices Amer. Math. Soc. 48 (2001), 294–303.Google Scholar
[1] Taylor, M. Fourier integral operators and harmonic analysis on compact manifolds, Proc. Symp. Pure Math. 35 (1979), 115–36.Google Scholar
[2] Taylor, M. Pseudodifferential operators, Princeton University Press, Princeton, NJ, 1981.
[1] Thorin, O. An extension of a convexity theorem due to M. Riesz, Kungl. Fys. Sällsk. Lund. Förh. 8 (1939).Google Scholar
[1] Tomas, P. Restriction theorems for the Fourier transform, Proc. Symp. Pure Math. 35 (1979), 111–14.CrossRefGoogle Scholar
[1] Treves, F. Introduction to pseudodifferential and Fourier integral operators. Volume 1: Pseudodifferential operators. Volume 2: Fourier integral operators, Plenum Press, New York and London, 1980.CrossRef
[1] Vega, L. Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–78.Google Scholar
[1] Wiener, N. The ergodic theorem, Duke Math. J. 5 (1939), 1–18.Google Scholar
[1] Wisewell, S. Kakeya sets of curves, Geom. Funct. Anal. 15 (2005), 1319–62.Google Scholar
[1] Wolff, T. Unique continuation for and related problems, Revista Math. Iber. 6 (1990), 155–200.CrossRefGoogle Scholar
[2] Wolff, T. A property of measures in Rn and an application to unique continuation, Geom. Funct. Anal. 2 (1992), 225–84.Google Scholar
[3] Wolff, T. An improved bound for Kakeya type maximal functions, Revista Math. 11 (1993) 651–674.Google Scholar
[4] Wolff, T. Recent work connected with the Kakeya problem, Prospects in Mathematics, Princeton, NJ, 1996 AMS, 129–62.
[5] Wolff, T. Local smoothing type estimates on Lp for large p, Geom. Funct. Anal. 10 (2000), 1237–88.CrossRefGoogle Scholar
[6] Wolff, T. A sharp bilinear cone restriction estimate Ann. Math. 153 (2001), 661–98.Google Scholar
[7] Wolff, T. Lectures on harmonic analysis. With a foreword by Charles Fefferman and preface by Izabella Laba. Edited by Laba and Carol Shubin University Lecture Series 29, American Mathematical Society, Providence, RI, 2003.
[1] Xi, Y. On Kakeya-Nikodym type maximal inequalities, Trans. Amer. Math. Soc., to appear.
[1] Zygmund, A. On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. Pure Appl. 35 (1956), 223–48.Google Scholar
[2] Zygmund, A. On Fourier coefficients and transforms of two variables, Studia Math. 50 (1974), 189–201.CrossRefGoogle Scholar
[3] Zygmund, A. Trigonometric series, Cambridge University Press, Cambridge, 1979.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Christopher D. Sogge, The Johns Hopkins University
  • Book: Fourier Integrals in Classical Analysis
  • Online publication: 11 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781316341186.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Christopher D. Sogge, The Johns Hopkins University
  • Book: Fourier Integrals in Classical Analysis
  • Online publication: 11 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781316341186.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Christopher D. Sogge, The Johns Hopkins University
  • Book: Fourier Integrals in Classical Analysis
  • Online publication: 11 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781316341186.014
Available formats
×