Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T07:28:53.087Z Has data issue: false hasContentIssue false

3 - From Normal to Anomalous Diffusion

Published online by Cambridge University Press:  17 January 2018

Luiz Roberto Evangelista
Affiliation:
Universidade Estadual de Maringá, Brazil
Ervin Kaminski Lenzi
Affiliation:
Universidade Estadual de Maringá, Brazil
Get access

Summary

This chapter starts with a brief history of the approaches to diffusion phenomena, by emphasising the first investigations of Brownian motion, i.e., stochastic motion, the random walk problem, and its connection with the diffusion processes. Subsequently, the concepts of anomalous diffusion and continuous-time random walk are introduced. Some formal aspects of the dynamics in normal and anomalous diffusion are presented. The link between these formalisms is established by introducing memory effects in the diffusion processes. In this enlarged scenario, non-Markovian behaviour and temporal memory are incorporated into the description of the diffusive processes in the presence of external fields, thus opening the whole approach to consider the possibility of application of fractional calculus.

Historical Perspectives on Diffusion Problems

The term diffusion comes from the Latin diffusio, diffusionem, connected with the verb diffundere, meaning “to scatter”, “to pour out”, and is formed by dis- “apart, in every direction” plus fundere “pour”. In physics, this term is applied to molecular diffusion, i.e., the random molecular motion by which matter is transported from places of higher to places of lower concentrations.

Pioneering Studies

The pioneering investigations of the diffusion process are usually attributed to the Scottish chemist Thomas Graham (1805–1869), who is also one of the founders of the Chemical Society of London and its first president (1841–1843). An important paper on gaseous diffusion appeared in 1829, in the Quarterly Journal of Science, under the title “A short account of experimental researches on the diffusion of gas through each other, and their separation by mechanical means”. The first lines of the article state [68]:

Fruitful as the miscibility of the gases has been in interesting speculations, the experimental information we possess on the subject amounts to little more than well established fact, that gases of a different nature, when brought into contact, do not arrange themselves according to their density, the heaviest undermost, the lightest uppermost, but they spontaneously diffuse, mutually and equably, through each other, and so remain in an intimate state of mixture for any length of time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×