Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-07T21:50:26.271Z Has data issue: false hasContentIssue false

14 - Spectral Spaces via Model Theory

Published online by Cambridge University Press:  08 March 2019

Max Dickmann
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Niels Schwartz
Affiliation:
Universität Passau, Germany
Marcus Tressl
Affiliation:
University of Manchester
Get access

Summary

In this chapter we show how spectral spaces can be analyzed and constructed from a model-theoretic perspective. The reader is assumed to have seen firstorder predicate logic, including routine manipulations with formulas and structures; the precise setup is explained in Section 14.1. The central notion of the chapter is type space. In the classical meaning of the word, this is the spectrum (or “Stone-space”) S(T) of the Boolean algebra (called the Tarski–Lindenbaum algebra) of formulas, modulo equivalence with respect to a given theory T. Hence, in model theory, Boolean spaces are in the forefront.We will extend the setup by taking into account a given set Δ of formulas of interest, and adjust the type space to reflect this additional information. For example, in the language of rings one may want to focus on the set Δ of polynomial identities. Or, one considers instances of a given formula? (x, y) (i.e., we choose Δ to be the set of all formulas? (x, c), where c varies among the constants of a given language). One then essentially runs the classical construction of type spaces within Δ and obtains a set SΔ(T); see 14.2.1 and 14.2.4. In modern model theory, this construction is known under the name partial types and it is considered as a Boolean quotient space of S(T).

In 14.2.5 we show that SΔ(T) carries a natural, in general not Boolean, spectral topology; the open quasi-compact sets reflect lattice combinations of formulas from Δ. The space SΔ(T) is examined in Section 14.2. To see how the spectrum of a bounded distributive lattice, and thus any spectral space, fits into the model-theoretic setup, see 14.2.10; for the Zariski spectrum, see 14.2.9.

The second half of the chapter introduces a general method of attaching spectra to a given first-order structure A. One method is through expansions of A, see 14.2.12. The second, more general, method is exposed in Section 14.3 and defines spectra of A via morphisms into models of some axiomatizable class of structures (in a possibly larger language). For both methods the spectra are of the form SΔ(T) for suitably chosen data Δ and T. In 14.3.13 we show that the points of spectra attached to a structure A using the new methods admit an algebraic description in terms of expansions of A.

Type
Chapter
Information
Spectral Spaces
, pp. 540 - 578
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×