Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-04T01:24:58.820Z Has data issue: true hasContentIssue false

7 - Backhaul Load Constraint

Published online by Cambridge University Press:  09 February 2018

Venugopal V. Veeravalli
Affiliation:
University of Illinois, Urbana-Champaign
Aly El Gamal
Affiliation:
Purdue University, Indiana
Get access

Summary

In the previous two chapters, we have considered cooperative transmission schemes that are constrained by the number of transmitters to which each message can be assigned. While meeting a backhaul capacity limit by a per-message constraint can have its analytical advantages, such as reducing a difficult information-theoretic problem to a simple combinatorial one, this approach suffers from a few important drawbacks.

For one, the maximum transmit set size constraint may not reflect most practical scenarios for two reasons. First, because fractional reuse across different resource (e.g., frequency or time) slots can be used to achieve an equal load on the backhaul per message, it may not make sense to impose a maximum transmit set size constraint for each channel use. Secondly, the maximum transmit set size constraint may not reflect the nature of the backhaul link, as we will discuss further below.

Also, as we have discussed in the previous chapter, the optimal solutions for the maximum transmit set size constraint may not fully utilize the constraint; i.e., for the optimal solution, some messages need not be assigned to the allowed maximum number of transmitters. We have seen in Chapter 6 that this is the case for the optimal schemes for linear interference networks, as well as for general locally connected networks where we impose the restriction of using only zero-forcing coding schemes.

The appropriate constraint to consider for the assignment of messages to transmitters should depend on the nature of the backhaul link used in practice (see, e.g., [69, 86]). For example, in the context of heterogeneous networks, the backhaul can be a wireless network, and an overall backhaul load constraint would be a more appropriate choice. On the other hand, for the case of wireline or optical fiber backhaul links, the maximum transmit set size constraint can be useful. However, even with wireline backhaul links, an average transmit set size constraint can allow for flexible solutions that interleave the use of the backhaul links over multiple communication sessions. In general, a constraint that bounds the average transmit set size is more relevant to practice than imposing a maximum constraint on each transmit set size. We show in this chapter how the solutions for the CoMP transmission problem provided under the maximum transmit set size constraint can be used to find solutions under an average transmit set size or backhaul load constraint.

Type
Chapter
Information
Interference Management in Wireless Networks
Fundamental Bounds and the Role of Cooperation
, pp. 126 - 147
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×