Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T18:47:12.755Z Has data issue: false hasContentIssue false

4 - Conservation Principles

Published online by Cambridge University Press:  02 February 2017

Vincent De Sapio
Affiliation:
HRL Laboratories LLC, California
Get access

Summary

The traditional starting point in the classical study of mechanics is with the so-called conservation principles. Newton's famous laws of motion form the basis of classical mechanics. We can consider Newton's second law as part of a more general conservation principle; specifically the conservation of translational momentum.

In this chapter we will begin with Newton's laws, which address point masses, and generalize to extended bodies (rigid bodies) using Euler's extension of Newton's laws. In both cases, point masses and rigid bodies, conservation of momentum plays the central role. We will articulate the Newton-Euler Principle as the basis for deriving the equations of motion for both a single rigid body and for systems of interconnected rigid bodies (i.e., kinematic chains). As we apply the conservation of translational and angular momentum to a single rigid body, we will define a set of fundamental inertial properties, including the center of mass and the inertia tensor. Furthermore, as we apply the conservation principles to a set of interconnected rigid bodies, we will articulate the iterative Newton-Euler method for deriving the equations of motion of kinematic chains.

A fundamental concept in Newtonian mechanics is that of an inertial (Galilean) reference frame. This is a frame of reference in which time and space are homogeneous and isotropic; that is, the laws of physics are the same for all points and orientations. All inertial references frames have constant motion (constant translational velocity) with respect to each other. Derivatives will be assumed to be taken with respect to an inertial reference frame, unless otherwise stated.

The Newton-Euler Principle

We begin by addressing a single point mass. Newton's laws of motion are as follows:

  1. 1. With respect to an inertial reference frame, a point mass at rest tends to stay at rest. A point mass in motion tends to move at a constant velocity unless acted on by external forces.

  2. 2. The sum of forces, f, acting on a point mass impart to it an acceleration, a, in the same direction as the resultant force vector and with a magnitude inversely proportional to the mass, M, of the body. That is, f = Ma.

Type
Chapter
Information
Advanced Analytical Dynamics
Theory and Applications
, pp. 83 - 100
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×