Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-20T16:32:15.142Z Has data issue: false hasContentIssue false

Chapter 11 - Symmetry and Conservation Laws

Published online by Cambridge University Press:  20 October 2018

Ajit Kumar
Affiliation:
Indian Institute of Technology, Delhi
Get access

Summary

According to Herman Wey1, by symmetry of an object (or a physical system) we mean the property of the object to appear unchanged after some operation has been done on it. We then say that the object is symmetrical under the given operation. For instance, consider a square. It is indistinguishable after rotations by and about the axis passing through its geometrical center and perpendicular to its plane (Shown by the dot in the figure). This axis is said to be the axis of symmetry of the square. Note that the angle of rotation, for which the square possesses symmetry, takes on only discrete values. Consequently, it has, as we say, a discrete symmetry. On the other hand, a sphere looks unchanged after all rotations (infinitesimal or finite) about its axis of symmetry. Since the angle of rotation can take continuous values, the rotational symmetry of the sphere is a continuous symmetry.

It turns out that, for each continuous symmetry of a physical system, there exists a conserved quantity, i.e., a physical characteristic that remains constant as the system evolves in time according to a given dynamical equation. This result is known as the celebrated Nöther theorem. For example, if we place a system of particles in empty space, far from anything that might affect it, it does not make a difference where exactly we put it. There are no preferred locations in empty space; all locations are equivalent. As a consequence, there is a symmetry for a system of particles with respect to translations in empty space. This translational symmetry leads to the law of conservation of the total linear momentum of the system. Similarly, there exists a symmetry for a system of particles in empty space with respect to rotations of the system as a whole because there are no preferred directions in empty space. This rotational symmetry leads to conservation of the total angular momentum of the system. Another important symmetry is the symmetry with respect to shift in time. It turns out that it does not matter when we perform an experiment on an isolated system. The results will be the same. This symmetry with respect to shift in the origin of time gives rise to the law of conservation of energy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Symmetry and Conservation Laws
  • Ajit Kumar, Indian Institute of Technology, Delhi
  • Book: Fundamentals of Quantum Mechanics
  • Online publication: 20 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781316884546.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Symmetry and Conservation Laws
  • Ajit Kumar, Indian Institute of Technology, Delhi
  • Book: Fundamentals of Quantum Mechanics
  • Online publication: 20 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781316884546.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Symmetry and Conservation Laws
  • Ajit Kumar, Indian Institute of Technology, Delhi
  • Book: Fundamentals of Quantum Mechanics
  • Online publication: 20 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781316884546.012
Available formats
×