Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-07T22:23:21.425Z Has data issue: false hasContentIssue false

Macroscopic model for generalised Newtonian inertial two-phase flow in porous media

Published online by Cambridge University Press:  30 August 2023

Jessica Sánchez-Vargas
Affiliation:
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX 04510, Mexico Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, CDMX 04510, México
Francisco J. Valdés-Parada*
Affiliation:
División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, col. Vicentina 09340, Mexico
Mauricio A. Trujillo-Roldán
Affiliation:
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX 04510, Mexico Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México. Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, México
Didier Lasseux
Affiliation:
University of Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400, Talence, France
*
Email address for correspondence: iqfv@xanum.uam.mx

Abstract

A closed macroscopic model for quasi-steady, inertial, incompressible, two-phase generalised Newtonian flow in rigid and homogeneous porous media is formally derived. The model consists of macroscopic equations for mass and momentum balance as well as an expression for the macroscopic pressure difference between the two fluid phases. The model is obtained by upscaling the pore-scale equations, employing a methodology based on volume averaging, the adjoint method and Green's formulation, only assuming the existence of a representative elementary volume and the separation of scales between the microscale and the macroscale. The average mass equations coincide with those for Newtonian flow. The macroscopic momentum balance equation in each phase expresses the seepage velocity in terms of a dominant and a coupling Darcy-like term, a contribution from interfacial tension effects and another one from interfacial inertia. Finally, the expression of the macroscopic pressure difference is obtained in terms of the macroscopic pressure gradient and body force in each phase, and interfacial terms that account for capillary effects and inertia, if present when the interface is not stationary. All terms involved in the macroscale equations are predicted from the solution of adjoint closure problems in periodic representative domains. Numerical predictions from the upscaled models are compared with direct numerical simulations for two-dimensional configurations, considering flow of a Newtonian non-wetting fluid and a Carreau wetting fluid. Excellent agreement between the two approaches confirms the pertinence of the macroscopic models derived here.

Type
JFM Papers
Copyright
© Universidad Autónoma Metropolitana, Universidad Nacional Autónoma de México, and CNRS, 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airiau, C. & Bottaro, A. 2020 Flow of shear-thinning fluids through porous media. Adv. Water Resour. 143, 103658.CrossRefGoogle Scholar
Auriault, J.-L., Boutin, C. & Geindreau, C. 2009 Homogenization of Coupled Phenomena in Heterogenous Media. ISTE LTD.CrossRefGoogle Scholar
Auriault, J.-L. & Sanchez-Palencia, E. 1986 Remarques sur la loi de Darcy pour les écoulements biphasiques en milieu poreux. J. Méc. Théor. Appl. 141153.Google Scholar
Belalia, F. & Djelali, N.-E. 2014 Rheological properties of sodium alginate solutions. Rev. Roum. Chim. 59 (2), 135145.Google Scholar
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, Fluid Mechanics, 2nd edn, vol. 1. Wiley-Interscience.Google Scholar
Bottaro, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid Mech. 877, P1.CrossRefGoogle Scholar
Chhabra, R. & Basavaraj, M.G. 2019 Chapter 7 - Flow of fluids through granular beds and packed columns. In Coulson and Richardson's Chemical Engineering (Sixth Edition). Volume 2a: Particulate Systems and Particle Technology, pp. 335–386. Butterworth-Heinemann.CrossRefGoogle Scholar
Chhabra, R.P. & Uhlherr, P.H.T. 1980 Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheol. Acta 19 (2), 187195.CrossRefGoogle Scholar
Choi, J. & Dong, H. 2021 Green functions for the pressure of Stokes systems. Intl Maths Res. Not. 2021, 16991759.CrossRefGoogle Scholar
Druetta, P. & Picchioni, F. 2020 Influence of physical and rheological properties of sweeping fluids on the residual oil saturation at the micro- and macroscale. J. Non-Newtonian Fluid Mech. 286, 104444.CrossRefGoogle Scholar
Elbert, D.L. 2011 Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater. 7 (1), 3156.CrossRefGoogle ScholarPubMed
Giri, A.K. & Majumder, S.K. 2014 Pressure drop and its reduction of gas–non-Newtonian liquid flow in downflow trickle bed reactor (DTBR). Chem. Engng Res. Des. 92, 3442.CrossRefGoogle Scholar
Gray, W.G. 1975 A derivation of the equations for multi-phase transport. Chem. Engng Sci. 30 (2), 229233.CrossRefGoogle Scholar
Gray, W.G. & Miller, C.T. 2011 TCAT analysis of capillary pressure in non-equilibrium, two-fluid-phase, porous medium systems. Adv. Water Resour. 34 (6), 770778.CrossRefGoogle ScholarPubMed
Hassanizadeh, S.M. & Gray, W.G. 1993 Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29 (10), 33893405.CrossRefGoogle Scholar
Hayashi, N., Hayakawa, I. & Fujio, Y. 1993 Flow behaviour of soy protein isolate melt with low and intermediate moisture levels at an elevated temperature. J. Food Engng 18 (1), 111.CrossRefGoogle Scholar
Katiyar, A., Agrawal, S., Ouchi, H., Seleson, P., Foster, J.T. & Sharma, M.M. 2020 A general peridynamics model for multiphase transport of non-Newtonian compressible fluids in porous media. J. Comput. Phys. 402, 109075.CrossRefGoogle Scholar
Klüver, E. & Meyer, M. 2014 Thermoplastic processing, rheology, and extrudate properties of wheat, soy, and pea proteins. Polym. Engng Sci. 55 (8), 19121919.CrossRefGoogle Scholar
Kwon, O., Krishnamoorthy, M., Cho, Y.I., Sankovic, J.M. & Banerjee, R.K. 2008 Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty. J. Biomech. Engng 130 (1), 011003.CrossRefGoogle ScholarPubMed
Lasseux, D., Ahmadi, A. & Arani, A.A.A. 2008 Two-phase inertial flow in homogeneous porous media: a theoretical derivation of a macroscopic model. Transp. Porous Med. 75 (3), 371400.CrossRefGoogle Scholar
Lasseux, D., Arani, A.A.A. & Ahmadi, A. 2011 On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media. Phys. Fluids 23 (7), 073103.CrossRefGoogle Scholar
Lasseux, D., Quintard, M. & Whitaker, S. 1996 Determination of permeability tensors for two-phase flow in homogeneous porous media: theory. Transp. Porous Med. 24 (2), 107137.CrossRefGoogle Scholar
Lasseux, D. & Valdés-Parada, F.J. 2017 Symmetry properties of macroscopic transport coefficients in porous media. Phys. Fluids 29 (4), 043303.CrossRefGoogle Scholar
Lasseux, D. & Valdés-Parada, F.J. 2022 A macroscopic model for immiscible two-phase flow in porous media. J. Fluid Mech. 944, A43.CrossRefGoogle Scholar
Lasseux, D. & Valdés-Parada, F.J. 2023 Upscaled dynamic capillary pressure for two-phase flow in porous media. J. Fluid Mech. 959, R2.Google Scholar
Lasseux, D., Valdés-Parada, F.J. & Porter, M.L. 2016 An improved macroscale model for gas slip flow in porous media. J. Fluid Mech. 805, 118146.CrossRefGoogle Scholar
Liu, B.Y., Xue, C.-H., An, Q.-F., Jia, S.-T. & Xu, M.-M. 2019 Fabrication of superhydrophobic coatings with edible materials for super-repelling non-Newtonian liquid foods. Chem. Engng J. 371, 833841.CrossRefGoogle Scholar
Liu, Z., et al. 2022 Acoustophoretic liquefaction for 3D printing ultrahigh-viscosity nanoparticle suspensions. Adv. Mater. 34 (7), 2106183.CrossRefGoogle ScholarPubMed
Marcovich, N.E., Reboredo, M.M., Kenny, J. & Aranguren, M.I. 2004 Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheol. Acta 43 (3), 293303.CrossRefGoogle Scholar
Marle, C.-M. 1981 From the pore scale to the macroscopic scale: equations governing multiphase fluid flow through porous media. Flow and Transport in Porous Media. Proceedings of Euromech 143, Delft, 1981, pp. 57–61. CRC Press.Google Scholar
Meng, F. 2019 Difference analysis of polymer injection under constant velocity and pressure conditions. IOP Conf. Ser.: Earth Environ. Sci. 252 (5), 052020.CrossRefGoogle Scholar
Nilsson, M.A., Kulkarni, R., Gerberich, L., Hammond, R., Singh, R., Baumhoff, E. & Rothstein, J.P. 2013 Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device. J. Non-Newtonian Fluid Mech. 202, 112119.CrossRefGoogle Scholar
Pascal, H. 1983 Rheological behaviour effect of non-Newtonian fluids on steady and unsteady flow through a porous medium. Intl J. Numer. Anal. Meth. Geomech. 7, 289303.CrossRefGoogle Scholar
Pascal, H. 1984 Dynamics of moving interface in porous media for power law fluids with yield stress. Intl J. Engng Sci. 22, 577590.CrossRefGoogle Scholar
Pascal, H. 1986 Rheological effects of non-Newtonian behavior of displacing fluids on stability of a moving interface in radial oil displacement mechanism in porous media. Intl J. Engng Sci. 24 (9), 14651476.CrossRefGoogle Scholar
Pascal, H. 1990 Some self-similar two-phase flows of non-Newtonian fluids through a porous medium. Stud. Appl. Maths 82, 305318.CrossRefGoogle Scholar
Pascal, H. & Pascal, F. 1988 Dynamics of non-Newtonian fluid interfaces in a porous medium: compressible fluids. J. Non-Newtonian Fluid Mech. 28, 227238.CrossRefGoogle Scholar
Pearson, J.R.A. & Tardy, P.M.J. 2002 Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newtonian Fluid Mech. 102, 447473.CrossRefGoogle Scholar
Philippe, N., Davarzani, H., Colombano, S., Dierick, M., Klein, P.-Y. & Marcoux, M. 2020 Experimental study of the temperature effect on two-phase flow properties in highly permeable porous media: application to the remediation of dense non-aqueous phase liquids (DNAPLs) in polluted soil. Adv. Water Resour. 146, 103783.CrossRefGoogle Scholar
Piau, J.M., Kissi, N.E. & Tremblay, B. 1988 Low Reynolds number flow visualization of linear and branched silicones upstream of orifice dies. J. Non-Newtonian Fluid Mech. 30 (2-3), 197232.CrossRefGoogle Scholar
Picchi, D. & Battiato, I. 2018 The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media. Water Resour. Res. 54 (9), 66836707.CrossRefGoogle Scholar
Rezende, R.A., Bártolo, P.J., Mendes, A. & Filho, R.M. 2009 Rheological behavior of alginate solutions for biomanufacturing. J. Appl. Polym. Sci. 113 (6), 38663871.CrossRefGoogle Scholar
Safinski, T. & Adesina, A.A. 2012 Two-phase flow countercurrent operation of a trickle bed reactor: hold-up and mixing behavior over Raschig rings fixed bed and structured bale packing. Ind. Engng Chem. Res. 51, 16471662.CrossRefGoogle Scholar
Sánchez-Vargas, J., Valdés-Parada, F.J. & Lasseux, D. 2022 Macroscopic model for unsteady generalized Newtonian fluid flow in homogeneous porous media. J. Non-Newtonian Fluid Mech. 306, 104840.CrossRefGoogle Scholar
Sen, P., Nath, A. & Bhattacharjee, C. 2017 Packed-bed bioreactor and its application in dairy, food, and beverage industry. In Current Developments in Biotechnology and Bioengineering, pp. 235–277. Elsevier.CrossRefGoogle Scholar
Shende, T., Niasar, V. & Babaei, M. 2021 Pore-scale simulation of viscous instability for non-Newtonian two-phase flow in porous media. J. Non-Newtonian Fluid Mech. 296, 104628.CrossRefGoogle Scholar
Shi, Y. & Tang, G.H. 2016 Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method. J. Non-Newtonian Fluid Mech. 229, 8695.CrossRefGoogle Scholar
Singh, H. & Cai, J. 2019 Permeability of fractured shale and two-phase relative permeability in fractures. In Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs, pp. 105–132. Elsevier.CrossRefGoogle Scholar
Sorbie, K.S. 1991 Polymer-Improved Oil Recovery. Springer.CrossRefGoogle Scholar
Tian, J.P. & Yao, K.L. 1999 Immiscible displacements of two-phase non-Newtonian fluids in porous media. Phys. Lett. A 261, 174178.CrossRefGoogle Scholar
Tsakiroglou, C.D. 2004 Correlation of the two-phase flow coefficients of porous media with the rheology of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 117, 123.Google Scholar
Wang, L., Li, T., Guo, T., Cai, W., Zhang, D. & Xin, F. 2020 Simulation of non-Newtonian fluid seepage into porous media stacked by carbon fibers using micro-scale reconstruction model. Chem. Engng Res. Des. 153, 369379.CrossRefGoogle Scholar
Wang, M., Xiong, Y., Liu, L., Peng, G. & Zhang, Z. 2019 Lattice Boltzmann simulation of immiscible displacement in porous media: viscous fingering in a shear-thinning fluid. Transp. Porous Med. 126, 411429.CrossRefGoogle Scholar
Whitaker, S. 1986 Flow in porous media II: the governing equations for immiscible, two-phase flow. Transp. Porous Med. 1 (2), 105125.CrossRefGoogle Scholar
Whitaker, S. 1994 The closure problem for two-phase flow in homogeneous porous media. Chem. Engng Sci. 49 (5), 765780.CrossRefGoogle Scholar
Whitaker, S. 1999 The Method of Volume Averaging. Springer.CrossRefGoogle Scholar
Wittemann, F., Maertens, R., Kärger, L. & Henning, F. 2019 Injection molding simulation of short fiber reinforced thermosets with anisotropic and non-Newtonian flow behavior. Compos. A: Appl. Sci. Manuf. 124, 105476.CrossRefGoogle Scholar
Wu, Y.S. & Pruess, K. 1998 A numerical method for simulating non-Newtonian fluid flow and displacement in porous media. Adv. Water Resour. 21, 351362.CrossRefGoogle Scholar
Wu, Y.S., Pruess, K. & Witherspoon, P.A. 1991 Displacement of a Newtonian fluid by a non-Newtonian fluid in a porous medium. Transp. Porous Med. 6, 115142.CrossRefGoogle Scholar
Xi, L. & Shangping, G. 1987 A perturbation solution for non-Newtonian fluid two-phase flow through porous media. Acta Mechanica Sin. 3, 110.CrossRefGoogle Scholar
Xie, C., Lv, W. & Wang, M. 2018 Shear-thinning or shear-thickening fluid for better EOR? - a direct pore-scale study. J. Petrol. Sci. Engng 161, 683691.CrossRefGoogle Scholar
Yasuda, K., Armstrong, R.C. & Cohen, R.E. 1981 Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20 (2), 163178.CrossRefGoogle Scholar