Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T12:41:47.926Z Has data issue: false hasContentIssue false

Diversity and distribution of Triassic bryozoans in the aftermath of the end-Permian mass extinction

Published online by Cambridge University Press:  20 May 2016

Catherine M. Powers
Affiliation:
1Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, 90089-0740,
Joseph F. Pachut
Affiliation:
2Department of Earth Sciences, Indiana University-Purdue University at Indianapolis, 723 W. Michigan Street, Indianapolis, 46202,

Abstract

Seventy-three species of stenolaemate bryozoans are documented worldwide from the Triassic. Stage-level diversity and paleogeographical analyses reveal that the recovery of bryozoans following the end-Permian mass extinction was delayed until the Middle Triassic. Early Triassic bryozoans faunas, dominated by members of the Order Trepostomida, were depauperate and geographically restricted. Bryozoan diversity increased during the Middle Triassic and diversity peaked in the Carnian (early Late Triassic). High extinction rates throughout the Late Triassic led to the extinction of all stenolaemate orders except the Cyclostomida by the end of the Triassic. Comparisons between global carbonate rock volume, outcrop surface area, and bryozoan diversity indicate that the documented diversity pattern for bryozoans may have been related, in part, to the availability of carbonate environments during the Triassic.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M. and Westrop, S. R. 2000. An empirical assessment of taxic paleobiology. Science, 289:110112.Google Scholar
Ahr, W. M., Harries, P. M., Morgan, W. A., and Somerville, I. D. 2003. Permo-Carboniferous carbonate platforms and reefs. Society for Sedimentary Geology, Tulsa, 414 p.Google Scholar
Anstey, R. L. and Pachut, J. F. 1995. Phylogeny, diversity history, and speciation in Paleozoic bryozoans, p. 239284. In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York.Google Scholar
Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B., and Becker, L. 2003. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science, 302:13881392.Google Scholar
Baud, A., Cirilli, S., and Marcoux, J. 1996. Biotic response to mass extinction: The lowermost Triassic microbialites. Facies, 38:238242.Google Scholar
Beauvais, L. 1984. Evolution and diversification of Jurassic Scleractinia. Palaeontographica Americana, 54:219224.Google Scholar
Becker, L., Poreda, R. J., Basu, A. R., Pope, K. O., Harrison, T. M., Nicholson, C., and Iasky, R. 2004. Bedout: A possible end-Permian impact crater offshore of northwestern Australia. Science, 304:14691476.Google Scholar
Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E., and Rampino, M. R. 2001. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science, 291:15301533.Google Scholar
Beerling, D. and Berner, R. A. 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event, Global Biogeochemical Cycles, 1036.Google Scholar
Benton, M. J. 1991. What really happened in the Late Triassic? Historical Biology, 5:263278.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science, 268:5258.Google Scholar
Berner, R. A. 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences, 99:41724177.Google Scholar
Bizzarini, F. and Braga, G. 1994. Corynotrypoides ladina gen. et sp. nov., a questionable cyclostomatous bryozoan from the Upper Triassic of the eastern Dolomites (NE Italy), p. 2932. In Hayward, P. J., Ryland, J. S., and Taylor, P. D. (eds.), Biology and Paleobiology of Bryozoans. Olsen & Olsen, Fredensborg.Google Scholar
Boardman, R. S. and Cheetham, A. H. 1987. Phylum Bryozoa, p. 497549. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Science, Cambridge, Massachusetts.Google Scholar
Cuffey, R. J. 1974. Delineation of bryozoan constructional roles in reefs from comparison of fossil bioherms and living reefs, p. 357364, Proceedings of the Second International Coral Reef Symposium. 1. Great Barrier Reef Committee, Brisbane.Google Scholar
Cuffey, R. J. 1977. Bryozoan contributions to reefs and bioherms through geologic time, p. 181194. In Frost, S. H., Weiss, M. P., and Saunders, J. B. (eds.), Reefs and related Carbonates—Ecology and Sedimentology. AAPG, Tulsa.Google Scholar
Ernst, A. 2001. Bryozoa of the Upper Permian Zechstein Formation of Germany. Senckenbergiana lethaea, 81:135181.Google Scholar
Erwin, D. H. 1993. The Great Paleozoic Extinction. Columbia University Press, New York, 327 p.Google Scholar
Erwin, D. H. 1996. Understanding biotic recoveries: Extinction, survival, and preservation during the end-Permian mass extinction, p. 398418. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Erwin, D. H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton Univ. Press, Princeton, New Jersey, 296 p.Google Scholar
Erwin, D. H. and Pan, H. 1996. Recoveries and radiations: Gastropods after the Permo-Triassic mass extinction, p. 223229. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Geological Society of London, London.Google Scholar
Flügel, E. and Senowbari-Daryan, B. 2001. Triassic reefs of the Tethys, p. 217249. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Volume 17. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Flügel, E. and Sepkoski, J. J. 1984. Reorganization, development and evolution of post-Permian reefs and reef organisms. Palaeontographica Americana, 54:177186.Google Scholar
Fraiser, M. and Bottjer, D. J. 2003. Paleoecology of bivalves during their initial rise to dominance. Geological Society of America Abstracts with Programs, 35:417.Google Scholar
Fraiser, M. L. and Bottjer, D. J. 2004. The non-actualistic Early Triassic gastropod fauna: A case study of the Lower Triassic Sinbad Limestone Member. Palaios, 19:259275.Google Scholar
Fraiser, M. and Bottjer, D. J. 2007. Elevated atmospheric C02 and the delayed biotic recovery from the end-Permian mass extinction, Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Gilmour, E. H. and Morozova, I. P. 1999. Biogeography of the Late Permian Bryozoans. Paleontological Journal, 33:3651.Google Scholar
Gordon, W. A. 1975. Distribution by latitude of Phanerozoic evaporite deposits. Journal of Geology, 83:671684.Google Scholar
Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307:706709.Google Scholar
Hallam, A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 35:144.Google Scholar
Hallam, A. 1986. Evidence of displaced terranes from Permian to Jurassic faunas around the Pacific margins. Journal of the Geological Society, London, 143:209216.Google Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology, 5:257262.Google Scholar
Hallam, A. and Wignall, P. B. 1997. Mass Extinctions and their Aftermath. Oxford University Press, New York, 320 p.Google Scholar
Harries, P. J. and Kauffman, E. G. 1990. Patterns of survival and recovery following the Cenomanian-Turonian (Late Cretaceous) mass extinction in the Western Interior Basin, United States, p. 277298. In Kauffman, E. G. and Walliser, O. H. (eds.), Extinction Events in Earth History. Volume 30. Springer-Verlag, Berlin.Google Scholar
Harries, P. J., Kauffman, E. G., and Hansen, T. A. 1996. Models for biotic survival following mass extinction, p. 4160. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Geological Society of London, London.Google Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F., and Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary sunchronized with major carbon-cycle pertubation: A link to initiation of massive volcanism? Geology, 30:251254.Google Scholar
Hollingworth, N. and Pettigrew, T. 1988. Zechstein reef fossils and their palaeoecology. Palaeontological Association Field Guides to Fossils, 3:175.Google Scholar
Huey, R. B. and Ward, P. D. 2005. Hypoxia, global warming and terrestrial Late Permian extinctions. Science, 308:398401.Google Scholar
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified super-ocean: records from lost deep sea. Science, 276:235238.Google Scholar
James, N. P. and Clarke, J. A. D. 1997. Cool-water carbonates. Society for Sedimentary Geology, Tulsa, 440 p.Google Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., Davis, D. W., and Trofimov, V. R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251Ma. Earth and Planetary Science Letters, 214:7591.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 2002. Phanerozoic reef patterns. Society for Sedimentary Geology, Tulsa, 775 p.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and Late Permian mass extinction. Science, 273:452457.Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256:295313.Google Scholar
Kohring, R. R. and Hörnig, A. C. F. 1998. The earliest freshwater Bryozoa: evidence from the Upper Triassic Molteno Formation (South Africa). Journal of African Earth Sciences, 27:125.Google Scholar
Kohring, R. R. and Hörnig, A. C. F. 2002. Freshwater bryozoan remains from the Molteno Formation (Upper Triassic) of South Africa, p. 171174. In Wyse Jackson, P. N., Buttler, C. J., and Spencer Jones, M. E. (eds.), Bryozoan Studies 2001. Swets & Zeitlinger, Lisse.Google Scholar
Kump, L. R., Pavlov, A., and Arthur, M. A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33:397400.Google Scholar
Lehrmann, D. J. 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27:359362.2.3.CO;2>CrossRefGoogle Scholar
Lehrmann, D. J., Wan, Y., Wei, J., Yu, Y., and Xiao, J. 2001. Lower Triassic peritidal cyclic limestone; An example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 173: 103123.Google Scholar
Marenco, P. J., Corsetti, F. A., Bottjer, D. J., Baud, A., and Kaufman, A. J. 2005. Sulfur isotope anomalies and the end-Permian mass extinction. PaleoBios, 25:80.Google Scholar
Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., and Bellieni, G. 2004. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology, 32:973976.Google Scholar
Mei, S. and Henderson, C. 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:237260.Google Scholar
Morozova, I. P. and Zharnikova, N. K. 1984. On some new Triassic bryozoans. Paleontological Journal, 4:7278.Google Scholar
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305:17601763.Google Scholar
Nakrem, H. A. and Mork, A. 1991. New early Triassic Bryozoa (Trepostomata) from Spitsbergen, with some remarks on the stratigraphy of the investigated horizons. Geological Magazine, 128:129140.Google Scholar
Nielsen, J. K. and Shen, Y. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32:10371040.Google Scholar
Olsen, P. E., Kent, D. V., Sues, H. D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E. C., Fowell, S. J., Szajna, M. J., and Hartline, B. W. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science, 296:13051307.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H. 2004. Large perturbations of the carbon cycle from the End-Permian extinction. Science, 305.Google Scholar
Powers, C. M. and Bottjer, D. J. 2006. Onshore-offshore distribution of Permian to Jurassic bryozoans and the environmental signature of the Permian-Triassic and Triassic-Jurassic mass extinctions. Geological Society of America Abstracts with Programs, 38(7): 117.Google Scholar
Pruss, S., Fraiser, M., and Bottjer, D. J. 2004. The proliferation of Early Triassic wrinkle structures: Implications for environmental stress following the end-Permian mass extinction. Geology, 32(5):461464.Google Scholar
Pruss, S. B. and Bottjer, D. J. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 19:551564.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206:217218.Google Scholar
Reichow, M. K., Saunders, A. D., White, R. V., Pringle, M. S., Al'Mukhamedov, A. I., Medvedev, A. I., and Kirda, N. P. 2002. 40Ar/39Ar dates from the West Siberian Basin; Siberian flood basalt province doubled. Science, 296:1856–1849.Google Scholar
Ronov, A. B. 1982. The earth's sedimentary shell (quantitative patterns of its structure, composition, and evolution). International Geology Review, 24:13131363.Google Scholar
Ryskin, G. 2003. Methane-driven oceanic eruptions and mass extinctions. Geology, 31:741744.Google Scholar
Schäfer, P. 1994. Bryozoen der Trias—einr Ubersicht. Abhandlungen der Geologischen Bundesanstalt Wien, 50:387397.Google Scholar
Schäfer, P., Cuffey, R. J., and Young, A. R. 2003a. New Trepostomid Bryozoa from the Lower Triassic (Scythian) of Nevada. Palaeontologische Zeitschrift, 77:323340.Google Scholar
Schäfer, P. and Fois, E. 1987. Systematics and evolution of Triassic Bryozoa. Geologica et Palaeontologica, 21:173225.Google Scholar
Schäfer, P. and Fois-Erickson, E. 1986. Triassic Bryozoa and the evolutionary crisis of Paleozoic stenolaemata. In Walliser, O. H. (ed.), Global Bio-Events. Lecture Notes in Earth Sciences. Volume 8. Springer-Verlag, Berlin.Google Scholar
Schäfer, P. and Grant-Mackie, J. 1994. Triassic Bryozoa from the Murihiku and Torlesse supergroups, New Zealand. Association of Australasian Palaeontologists, Memoir, 16:152.Google Scholar
Schäfer, P., Senowbari-Daryan, B., and Hamedani, A. 2003b. Stenolaemate bryozoans from the Upper Triassic (Norian-Rhaetian) Nayband Formation, Central Iran. Facies, 49:135150.Google Scholar
Schubert, J. K. and Bottjer, D. J. 1995. Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116:139.Google Scholar
Scotese, C. R. 2001a. Atlas of Earth History, Volume 1, Paleogeography. PALEOMAP Project, Arlington, Texas, 52 p.Google Scholar
Scotese, C. R. 2001b. Earth System History Geographic Information System v. 02b. PALEOMAP Project, Arlington, Texas.Google Scholar
Scotese, C. R. 2001c. Point Tracker v4c. PALEOMAP Project, Arlington, Texas.Google Scholar
Scotese, C. R. 2002. http://www.scotese.com. PALEOMAP website.Google Scholar
Senowbari-Daryan, B. and Ingavat-Helmcke, R. 1994. Sponge assemblage of some Upper Permian reef limestones from Phrae province (Northern Thailand). Geologija, 36:559.Google Scholar
Sepkoski, J. J. 1996. Patterns of Phanerozoic extinction: A perspective from global databases, p. 3551. In Walliser, O. H. (ed.), Global Events and Event Stratigraphy in the Phanerozoic. Springer-Verlag, Berlin.Google Scholar
Shen, J., Kawamura, T., and Yang, W. 1998. Upper Permian coral reef and colonial rugose corals Hunan, South China. Facies, 39:3566.Google Scholar
Stanley, G. D. 1988. The history of Early Mesozoic reef communities: a three-step process. Palaios, 3:170183.Google Scholar
Stanley, S. M. and Yang, X. 1994. A double mass extinction at the end of the Paleozoic era. Science, 266:13401344.Google Scholar
Tanner, L. H., Lucas, S. G., and Chapman, M. G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65: 103139.Google Scholar
Taylor, P. D. and Allison, P. A. 1998. Bryozoan carbonates through time and space. Geology, 26(5):459462.Google Scholar
Taylor, P. D. and Larwood, G. P. 1990. Major evolutionary radiations in the Bryozoa, p. 209233. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon, Oxford.Google Scholar
Taylor, P. D. and Michalik, J. 1991. Cyclostome bryozoans from the late Triassic (Rhaetian) of the West Carpathians, Czechoslovakia. Neues Jahrbuch fuer Geologie und Palaeontologie. Abhandlungen, 182:285302.Google Scholar
Tozer, E. T. 1981. Triassic Ammonoidea: Geographic and stratigraphic distribution, p. 397431. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Academic Press, London.Google Scholar
Tozer, E. T. 1982. Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geologische Rundschau, 71:10771104.Google Scholar
Waterhouse, J. B. and Bonham-Carter, G. F. 1976. Range, proportionate representation, and demise of brachiopod families through the Permian Period. Geological Magazine, 113:401428.Google Scholar
Wignall, P. B., Morante, R., and Newton, R. 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry; facies, fauna and trace fossils. Geological Magazine, 135(1):4762.Google Scholar
Wignall, P. B. and Twitchett, R. J. 1999. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. Sedimentology, 46:303316.Google Scholar
Wignall, P. B. and Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event, p. 395413. In Koeberl, C. and MacLeod, K. C. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Volume 356. Geological of America, Boulder, Colorado.Google Scholar
Woods, A. D., Bottjer, D. J., Mutti, M., and Morrison, J. 1999. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology, 27(7):645648.Google Scholar
Zágorsek, K. 1993. New Anisian (middle Triassic) Bryozoa (Trepostomata) from the Vysoká Formation (Malé Karpaty Mts., western Carpathians) Slovakia. Geologica Carpathica, 44:4958.Google Scholar