Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:25:36.497Z Has data issue: false hasContentIssue false

Inhibitory effects of (-)-Epigallocatechin-3-gallate from green tea on the growth of Babesia parasites

Published online by Cambridge University Press:  22 December 2009

M. ABOULAILA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido080-8555, Japan
N. YOKOYAMA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido080-8555, Japan
I. IGARASHI*
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido080-8555, Japan
*
*Corresponding author: Tel: +81 155 49 5641. Fax: +81 155 49 5643. E-mail: igarcpmi@obihiro.ac.jp

Summary

(-)-Epigallocatechin-3-gallate (EGCG) is the major tea catechin and accounts for 50–80% of the total catechin in green tea. (-)-Epigallocatechin-3-gallate has antioxidant, anti-inflammatory, anti-microbial, anti-cancer, and anti-trypanocidal activities. This report describes the inhibitory effect of (-)-Epigallocatechin-3-gallate on the in vitro growth of bovine Babesia parasites and the in vivo growth of the mouse-adapted rodent babesia B. microti. The in vitro growth of the Babesia species was significantly (P<0·05) inhibited in the presence of micromolar concentrations of EGCG (IC50 values=18 and 25 μM for B. bovis, and B. bigemina, respectively). The parasites showed no re-growth at 25 μM for B. bovis and B. bigemina in the subsequent viability test. The drug significantly (P<0·05) inhibited the growth of B. microti at doses of 5 and 10 mg/kg body weight, and the parasites completely cleared on day 14 and 16 post-inoculation in the 5 and 10 mg/kg treated groups, respectively. These findings highlight the potentiality of (-)-Epigallocatechin-3-gallate as a chemotherapeutic drug for the treatment of babesiosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bork, S., Das, S., Okubo, K., Yokoyama, N. and Igarashi, I. (2006). Effects of protein kinase inhibitors on the in vitro growth of Babesia bovis. Parasitology 132, 775779.CrossRefGoogle ScholarPubMed
Bork, S., Okamura, M., Boonchit, S., Hirata, H., Yokoyama, N. and Igarashi, I. (2004 b). Identification of Babesia bovis L-lactate dehydrogenase as a potential chemotherapeutic target against bovine babesiosis. Molecular and Biochemical Parasitology 136, 165172.CrossRefGoogle ScholarPubMed
Bork, S., Okamura, M., Matsu, T., Kumar, S., Yokoyama, N. and Igarashi, I. (2005 b). Host serum modifies the drug susceptibility of Babesia bovis in vitro. The Journal of Parasitology 130, 489492.CrossRefGoogle ScholarPubMed
Bork, S., Yokoyama, N. and Igarashi, I. (2005 a). Recent advances in the chemotherapy of babesiosis by Asian scientist: Toxoplasmosis and Babesiosis in Asia. Asian Parasitology 4, 233242.Google Scholar
Bork, S., Yokoyama, N., Ikehara, Y., Kumar, S., Sugimoto, C. and Igarashi, I. (2004 a). Growth-inhibitory effect of heparin on Babesia parasites. Antimicrobial Agents and Chemotherapy 48, 236241.CrossRefGoogle ScholarPubMed
Bork, S., Yokoyama, N., Matsuo, T., Claveria, F. G., Fujisaki, K. and Igarashi, I. (2003 a). Growth inhibitory effect of triclosan on equine and bovine Babesia parasites. The American Journal of Tropical Medicine and Hygiene 68, 334340.CrossRefGoogle ScholarPubMed
Bork, S., Yokoyama, N., Matsuo, T., Claveria, F. G., Fujisaki, K. and Igarashi, I. (2003 b). Clotrimazole, ketoconazole, and clodinafop-propargyl as potent growth inhibitors of equine Babesia parasites during in vitro cultures. The Journal of Parasitology 89, 604606.Google Scholar
Bork, S., Yokoyama, N., Matsuo, T., Claveria, F. G., Fujisaki, K. and Igarashi, I. (2003 c). Clotrimazole, ketoconazole, and clodinafop-propargyl inhibit the in vitro growth of Babesia bigemina and Babesia bovis (Phylum Apicomplexa). Parasitology 127, 311315.CrossRefGoogle ScholarPubMed
Brasseur, P., Lecoublet, S., Kapel, N., Vennec, L. and Ballet, J. J. (1998). In vitro evaluation of drug susceptibilities of Babesia divergens isolates. Antimicrobial Agents and Chemotherapy 42, 818820.CrossRefGoogle ScholarPubMed
Brockelman, C. R. and Tan-ariya, P. (1991). Development of an in vitro microtest to assess drug susceptibility of Babesia bovis and Babesia bigemina. The Journal of Parasitology 6, 994997.Google Scholar
Chen, L. and Zhang, H. Y. (2007). Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin- 3-gallate. Molecules 12, 946957.Google Scholar
Cox, F. E. and Young, A. S. (1969). Acquired immunity to Babesia microti and Babesia rodhaini in mice. Parasitology 59, 257268.CrossRefGoogle ScholarPubMed
Fassina, G., Buffa, A., Benelli, R., Varnier, O. E., Noonan, D. M. and Albini, A. (2002). Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. AIDS 16, 939941.Google Scholar
Fraga, C. G., Martino, V. S., Ferraro, G. E., Coussio, J. D. and Boveris, A. (1987). Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochemical Pharmacology 36, 717720.Google Scholar
Graham, H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine 21, 334350.CrossRefGoogle ScholarPubMed
Gray, J. S. and Pudney, M. (1999). Activity of atovaquone against Babesia microti in the Mongolian gerbil, Meriones unguiculatus. The Journal of Parasitology 85, 723728.Google Scholar
Homer, M. J., Aguilar-Delfin, I., Telford, S. R., Krause, P. J. and Persing, D. H. (2000). Babesiosis. Clinical Microbiology Reviews 13, 451469.CrossRefGoogle ScholarPubMed
Hughes, W. T. and Oz, H. S. (1995). Successful prevention and treatment of babesiosis with atovaquone. The Journal of Infectious Diseases 172, 10421046.CrossRefGoogle ScholarPubMed
Kjemtrup, A. M. and Conrad, P. A. (2000). Human babesiosis: An emerging tick-borne disease. International Journal for Parasitology 30, 13231337.Google Scholar
Kuttler, K. (1988). World-wide impact of babesiosis. In Babesiosis of Domestic Animals and Man (ed. Ristic, M.), pp. 122. CRC Press Inc., Florida, USA.Google Scholar
Li, W., Ashok, M., Li, J., Yang, H., Sama, A. E. and Wang, H. (2007). A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS ONE 2, e1153.CrossRefGoogle Scholar
Lin, Y. L. and Lin, J. K. (1997). (−)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κ B. Molecular Pharmacology 52, 465472.Google Scholar
Mabe, K., Yamada, M., Oguni, I. and Takahashi, T. (1999). In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrobial Agents and Chemotherapy 43, 17881791.Google Scholar
Marley, S. E., Eberhard, M. L., Steurer, F. J., Ellis, W. L., McGreevy, P. B. and Ruebush, T. K. IInd., (1997). Evaluation of selected antiprotozoal drugs in the Babesia microti hamster model. Antimicrobial Agents and Chemotherapy 41, 9194.Google Scholar
Matsuu, A., Yamasaki, M., Xuan, X., Ikadai, H. and Hikasa, Y. (2008). In vitro evaluation of the growth inhibitory activities of 15 drugs against B. gibsoni (Amory strain). Veterinary Parasitology 157, 18.Google Scholar
Nakamura, K., Yokoyama, N. and Igarashi, I. (2007). Cyclin-dependent kinase inhibitors block erythrocyte invasion and intraerythrocytic development of Babesia bovis in vitro. Parasitology 135, 17.Google Scholar
Nakayama, M., Suzuki, K., Toda, M., Okubo, S., Hara, Y. and Shimamura, T. (1993). Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Research 21, 289299.CrossRefGoogle ScholarPubMed
Navarro-Martínez, M. D., Navarro-Perán, E., Cabezas-Herrera, J., Ruiz-Gómez, J., García-Cánovas, F. and Rodríguez-López, J. N. (2005). Antifolate activity of Epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy 49, 29142920.CrossRefGoogle ScholarPubMed
Nott, S. E., O'Sullivan, W. J., Gero, A. M. and Bagnara, A. S. (1990). Routine screening for potential babesicides using cultures of Babesia bovis. International Journal for Parasitology 20, 797802.Google Scholar
Okubo, K., Wilawan, P., Bork, S., Okamura, M., Yokoyama, N. and Igarashi, I. (2006). Calcium-ions are involved in erythrocyte invasion by equine Babesia parasites. Parasitology 133, 289294.CrossRefGoogle ScholarPubMed
Okubo, K., Yokoyama, N., Govind, Y., Alhassan, A. and Igarashi, I. (2007). Babesia bovis: effects of cysteine protease inhibitors on in vitro growth. Experimental Parasitology 117, 214217.Google Scholar
Paveto, C., Güida, M. C., Esteva, M. I., Martino, V., Coussio, J., Flawiá, M. M. and Torres, H. N. (2004). Anti-Trypanosoma cruzi activity of green tea (Camellia sinensis) catechins. Antimicrobial Agents and Chemotherapy 48, 6974.CrossRefGoogle ScholarPubMed
Pudney, M. and Gray, J. S. (1997). Therapeutic efficacy of atovaquone against the bovine intraerythrocytic parasite, Babesia divergens. The Journal of Parasitology 83, 307310.CrossRefGoogle ScholarPubMed
Ramirez-Mares, M. V., Chandra, S. and de Mejia, E. G. (2004). In vitro chemopreventive activity of Camellia sinensis, Ilex paraguariensis and Ardisia compressa tea extracts and selected polyphenols. Mutation Research 554, 5365.CrossRefGoogle ScholarPubMed
Rodriguez, R. I. and Trees, A. J. (1996). In vitro responsiveness of B. bovis to imidocarb dipropionate and the selection of adapted lines. Veterinary Parasitology 62, 3541.Google Scholar
Shammas, M. A., Neri, P., Koley, H., Batchu, R. B., Bertheau, R. C., Munshi, V., Prabhala, R., Fulciniti, M., Tai, Y. T., Treon, S. P., Goyal, R. K., Anderson, K. C. and Munshi, N. C. (2006). Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood 108, 28042810.Google Scholar
Vial, H. J. and Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary Parasitology 138, 147160.CrossRefGoogle ScholarPubMed
Wang, Y., Mei, Y., Feng, D. and Xu, L. (2006). (–)-Epigallocatechin- 3-gallate protects mice from Concanavalin A induced hepatitis through suppressing immune-mediated liver injury. Clinical and Experimental Immunology 145, 485492.Google Scholar
Weiss, L. M., Wittner, M., Wasserman, S., Oz, H. S., Retsema, J. and Tanowitz, H. B. (1993). Efficacy of azithromycin for treating Babesia microti infection in the hamster model. The Journal of Infectious Diseases 168, 12891292.CrossRefGoogle ScholarPubMed
Williamson, M. P., McCormick, T. G., Nance, C. L. and Shearer, W. T. (2006). Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. Journal of Allergy and Clinical Immunology 118, 13691374.Google Scholar
Wittner, M., Lederman, J., Tanowitz, H. B., Rosenbaum, G. S. and Weiss, L. M. (1996). Atovaquone in the treatment of Babesia microti infections in hamsters. The American Journal of Tropical Medicine and Hygiene 55, 219222.CrossRefGoogle ScholarPubMed
Yamaguchi, K., Honda, M., Ikigai, H., Hara, Y. and Shimamura, T. (2002). Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Research 53, 1934.Google Scholar
Yang, C. S. and Landau, J. M. (2000). Effects of tea consumption on nutrition and health. Journal of Nutrition 130, 24092412.Google Scholar
Yokoyama, N., Bork, S., Nishisaka, M., Hirata, H., Matsuo, T., Inoue, N., Xuan, X., Suzuki, H., Sugimoto, C. and Igarashi, I. (2003). Roles of the Maltese cross form in the development of parasitemia and protection against Babesia microti infection in mice. Infection and Immunity 71, 411417.Google Scholar