Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T07:40:03.233Z Has data issue: false hasContentIssue false

The Toba Volcanic Event and Interstadial/Stadial Climates at the Marine Isotopic Stage 5 to 4 Transition in the Northern Indian Ocean

Published online by Cambridge University Press:  20 January 2017

Hartmut Schulz
Affiliation:
Institut für Ostseeforschung, PF 301161, D-18112 Rostock-Warnemünde, Germany, E-mail: hartmut.schulz@io-warnemuende.de
Kay-Christian Emeis
Affiliation:
Institut für Ostseeforschung, PF 301161, D-18112 Rostock-Warnemünde, Germany, E-mail: hartmut.schulz@io-warnemuende.de
Helmut Erlenkeuser
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Universität Kiel, Max-Eyth-Str. 11-18, D-24118 Kiel, Germany
Ulrich von Rad
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, PF 510153, D-30631 Hannover, Germany
Christian Rolf
Affiliation:
Geowissenschaftliche Gemeinschaftsaufgaben, PF 510153, D-30631 Hannover, Germany

Abstract

The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5–4 boundary with the chemical composition of the “Youngest Toba Tuff.” Time series of the Uk′37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharyya, S.K., and Basu, P.K. Toba ash on the Indian subcontinent and its implications for the correlation of late Pleistocene alluvium. Quaternary Research 40, (1993). 1019.CrossRefGoogle Scholar
Bard, E., Rosteck, F., and Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone paleothermometry. Nature 385, (1997). 707710.CrossRefGoogle Scholar
Brock, J.C., McClain, C.R., Anderson, D.M., Prell, W.L., and Hay, W.W. Southwest monsoon of recent planktonic foraminifera in the northwestern Arabian Sea. Paleoceanography 7, (1992). 799815.CrossRefGoogle Scholar
Bühring, C., and Sarnthein, M. Toba ash layers in the South China Sea: Evidence for contrasting wind directions during eruption ca. 74 ka. Geology 28, (2000). 275278.2.3.CO;2>CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.-J., Flores, J.-A., and Shackleton, N.J. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14, (1999). 698705.CrossRefGoogle Scholar
Chesner, C.A., Rose, W.I., Deino, A., Drake, R., and Westgate, J.A. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified. Geology 19, (1991). 200203.2.3.CO;2>CrossRefGoogle Scholar
Clemens, S.C., and Prell, W.L. Late Pleistocene variability of Arabian summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments. Paleoceanography 5, (1990). 105145.CrossRefGoogle Scholar
Clemens, S. C., and Prell, W. L. (1991). One million year record of summer monsoon winds and continental aridity from the Owen Ridge (Site 722), Northwest Arabian Sea.. In Proceedings Ocean Drilling Program, Scientific Results 117 Prell, W. L., Niitsuma, N., Emeis, K.-C., and Meyers, P. A., Eds., pp. 365388.Google Scholar
CLIMAP-Project Members. (1976). The surface of the Ice-Age-Earth. Science 191, 11311137.Google Scholar
Cullen, J.L., and Prell, W.L. Planktonic foraminifera of the Northern Indian Ocean: Distribution and preservation in surface sediments. Marine Micropaleontology 9, (1984). 152.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 374, (1993). 218220.CrossRefGoogle Scholar
Dehn, J., Farrell, J. W., and Schmincke, H.-U. (1991). Neogene tephrochronology from Site 758 on the northern Ninetyeast Ridge: Indonesian arc volcanism of the past 5MA.. In Proceedings Ocean Drilling Program, Scientific Results 121 Weissel, J., Peirce, J., Taylor, E., Alt, J., et al., Eds., pp. 273295.Google Scholar
de Menocal, P.B. Plio-Pleistocene African climate. Science 270, (1995). 5359.CrossRefGoogle ScholarPubMed
de Menocal, P., Bloemendahl, J., and King, J. (1991). A rock-magnetic record of monsoonal dust deposition to the Arabian Sea: Evidence for a shift in the mode of deposition at 2.4 Ma.. In Proceedings Ocean Drilling Program, Scientific Results 117 Prell, W. L., Niitsuma, N., Emeis, K.-C., and Meyers, P. A., Eds., pp. 389401.Google Scholar
Emeis, K.-C., Anderson, D.M., Doose, H., Kroon, D., and Schulz-Bull, D. Sea-surface temperatures and the history of monsoon upwelling in the NW Arabian Sea during the last 500,000 yr. Quaternary Research 43, (1995). 355361.CrossRefGoogle Scholar
Emeis, K.-C., Struck, U., Schulz, H.-M., Rosenberg, R., Bernasconi, S., Erlenkeuser, H., Sakamoto, T., and Martinez-Ruiz, F. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeography, Palaeoclimatology, Palaeoecology 158, (2000). 259280.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552554.CrossRefGoogle Scholar
Hansen, J., Ruedy, R., Sato, M., and Reynolds, R. Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophysical Research Letters 23, (1996). 16651668.CrossRefGoogle Scholar
Ittekkot, V. The abiotically driven pump in the ocean and short-term fluctuations in atmospheric CO2 contents. Global and Planetary Change 8, (1993). 1725.CrossRefGoogle Scholar
Ittekkot, V., Haake, B., Bartsch, M., Nair, R.R., and Ramaswamy, V. Organic carbon removal in the sea: The continental connection. Summerhayes, C.P., Prell, W.L., and Emeis, K.-C. Upwelling Systems: Evolution since the Early Miocene. (1992). 167176.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, (1992). 311313.CrossRefGoogle Scholar
Kennett, J.P., Cannariato, K.G., Hendy, I.L., and Behl, R.L. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, (2000). 128133.CrossRefGoogle ScholarPubMed
Kennett, J.P., Cannariato, K.G., Hendy, I.L., and Behl, R.L. Role of methane hydrates in Late Quaternary climate change. Eos Transactions AGU 81, (2000). Google Scholar
Knight, M. D., Walker, G. P. L., Ellwood, B. B., and Diehl, J. F. (1986). Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs: Constraints on the sources and eruptive styles. Journal of Geophysical Research B91, 10,35510,382.CrossRefGoogle Scholar
Leuschner, D., and Sirocko, F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events. Quaternary Science Reviews 19, (2000). 243254.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000 year chronostratigraphy. Quaternary Research 27, (1987). 129.CrossRefGoogle Scholar
Meese, D., Gow, T., Alley, R., Zielinski, G., Grootes, P.M., Ram, M., Taylor, K., Mayewski, P., and Bolzan, J.F. The Greenland Ice Sheet Project depth-age scale: Methods and results. Journal of Geophysical Research C 102, (1997). 26,41126,423.CrossRefGoogle Scholar
Morse, J.W., and Mackenzie, E. Geochemistry of Sedimentary Carbonates: Developments in Sedimentology, Vol. 48. (1990). Elsevier, New York. p. 707 Google Scholar
Müller, P.J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Melé, A. Calibration of the alkenone paleotemperature index Uk′ 37 based on core tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica Cosmochimica Acta 62, (1998). 17571772.CrossRefGoogle Scholar
Ninkovich, D., Shackleton, N.J., Abdel-Monem, A.A., Obradovich, J.D., and Izett, G. K-Ar age of the Pleistocene eruption of Toba, north Sumatra. Nature 276, (1978). 574577.CrossRefGoogle Scholar
Pattan, J.N., Shane, P., and Banakar, V.K. New occurrence of Youngest Toba Tuff in abyssal sediments of the Central Indian Basin. Marine Geology 155, (1999). 243248.CrossRefGoogle Scholar
Prell, W.L. Variation of monsoonal upwelling: A response to changing solar radiation. Hansen, J.E., and Takahashi, T. Climate Processes and Climate Sensitivity. (1984). 4857.Google Scholar
Prell, W.L., and Kutzbach, J.E. Monsoon variability over the past 150,000 years. Journal of Geophysical Research 92, (1987). 84118425.CrossRefGoogle Scholar
Prell, W.L., and Kutzbach, J.E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360, (1992). 647652.CrossRefGoogle Scholar
Prell, W.L., Murray, D.W., Clemens, S.C., and Anderson, D.M. Evolution and variability of the Indian Ocean summer monsoon: Evidence from the Western Arabian Sea drilling program. Duncan, R.A. The Indian Ocean: A Synthesis of Results from Scientific Drilling in the Indian Ocean. (1992). 447475.Google Scholar
Rampino, M.R., and Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, (1992). 5052.CrossRefGoogle Scholar
Rampino, M.R., and Self, S. Climate-Volcanism Feedback and the Toba Eruption of ∼74,000 years ago. Quaternary Research 40, (1993). 269280.CrossRefGoogle Scholar
Reichart, G.J., Lourens, L.J., and Zachariasse, W.J. Temporal variability in the Northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography 13, (1998). 607621.CrossRefGoogle Scholar
Rose, W.I., and Chesner, C.A. Dispersal of ash in the great Toba eruption, 75 ka. Geology 15, (1987). 913917.2.0.CO;2>CrossRefGoogle Scholar
Rose, W.I., and Chesner, C.A. Worldwide dispersal of ash and gases from Earth's largest known eruption: Toba, Sumatra, 75ka. Palaeogeography, Palaeoclimatology, Palaeoecology 89, (1990). 269275.CrossRefGoogle Scholar
Schulte, S., Rosteck, F., Bard, E., Rullkötter, J., and Marchal, O. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea. Earth and Planetary Science Letters 173, (1999). 205221.CrossRefGoogle Scholar
Schulz, H., von Rad, U., and von Stackelberg, U. Laminated sediments from the oxygen-minimum zone of the northeastern Arabian Sea. Kemp, A.E.S Paleoclimatology and Paleoceanography from Laminated Sediments. (1996). 185207.Google Scholar
Schulz, H., von Rad, U., and Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations for the past 110,000 years. Nature 393, (1998). 5457.CrossRefGoogle Scholar
Shane, P., Westgate, J., Williams, M., and Korisettar, R. New geochemical evidence for the Youngest Toba Tuff in India. Quaternary Research 44, (1995). 200204.CrossRefGoogle Scholar
Sigurdsson, H. Evidence of volcanic loading of the atmosphere and climate response. Palaeogeography, Palaeoclimatology, Palaeoecology 89, (1990). 277289.CrossRefGoogle Scholar
Sirocko, F., and Lange, H. Clay-mineral accumulations in the Arabian Sea during the late Quaternary. Marine Geology 97, (1991). 105119.CrossRefGoogle Scholar
Sirocko, F., Sarnthein, M., Lange, H., and Erlenkeuser, H. Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the Last Glaciation. Quaternary Research 36, (1991). 7293.CrossRefGoogle Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., and Duplessy, J.C. Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, (1993). 322324.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schönberg, D., McIntyre, A., and Molfino, B. Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272, (1996). 526529.CrossRefGoogle Scholar
Song, S.R., Chen, C.H., Lee, M.Y., Yang, T.F., Iizuka, Y., and Wei, K.Y. Newly discovered eastern dispersal of the youngest Toba Tuff. Marine Geology 167, (2000). 303312.CrossRefGoogle Scholar
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277284.CrossRefGoogle Scholar
von Rad, U., Schulz, H., Riech, V., den Dulk, M., Berner, U., and Sirocko, F. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology 152, (1999). 129161.CrossRefGoogle Scholar
von Stackelberg, U. Faziesverteilung in Sedimenten des indisch-pakistanischen Kontinentalrandes (Arabisches Meer). “Meteor”-Forsch.-Ergebnisse, Reihe C 9, (1972). 173.Google Scholar
Westgate, J.S.A., Shane, P.A.R., Pearce, N.J.G., Perkins, W.T., Korisettar, R., Chesner, C.A., and Williams, M.A.J. All Toba Tephra occurrences across Peninsular India belong to the 75,000 yr. B.P. Eruption. Quaternary Research 50, (1998). 107112.CrossRefGoogle Scholar
White, J. W. C., Barlow, L. K., Fisher, D., Grootes, P., Jouzel, J., Johnsen, S. J., Stuiver, M., and Clausen, H. (1997). The climate signal in the stable isotopes from Summit, Greenland: Results of comparisons with modern climate observations. Journal of Geophysical Research C102, 2642526439.CrossRefGoogle Scholar
Zielinski, G.A. Use of paleo-records in determining variability within the volcanism-climate system. Quaternary Science Reviews 19, (2000). 417438.CrossRefGoogle Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., and Taylor, K. Potential atmospheric impact of the Toba mega-eruption 71,000 years ago. Geophysical Research Letters 23, (1996). 837840.CrossRefGoogle Scholar