Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-05T00:34:51.189Z Has data issue: false hasContentIssue false

Holocene millennial-scale variability of coastal environments on the southern coast of Korea and its controlling factors

Published online by Cambridge University Press:  11 September 2023

Jaesoo Lim*
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 305-350, Republic of Korea; and Korea University of Science and Technology (UST) Daejeon, 34113, Republic of Korea
Sangheon Yi*
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 305-350, Republic of Korea; and Korea University of Science and Technology (UST) Daejeon, 34113, Republic of Korea
Youngeun Kim
Affiliation:
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, 34122, Republic of Korea
*
Corresponding authors: Jaesoo Lim; Email: limjs@kigam.re.kr; Sangheon Yi; Email: shyi@kigam.re.kr
Corresponding authors: Jaesoo Lim; Email: limjs@kigam.re.kr; Sangheon Yi; Email: shyi@kigam.re.kr

Abstract

Coastal evolution is influenced by past sea-level changes and resultant shifts from fluvial- to marine-dominant environments and the accompanying significant geochemical and isotopic changes in the water mass and sediments. We investigated the elemental and isotopic features of coastal sedimentary cores (27 m in length) from a small paleo-bay located on the southern coast of Korea to determine such geochemical variability and specify past changes in the bay environment and anoxic conditions and possible links to past climate changes. We analyzed total organic carbon (TOC), total sulfur (TS), their isotopes (δ13CTOC and δ34STS), and pyrite. The δ13CTOC values ranging from −25 to −19‰ (a proxy for terrestrial influence) were lower than average (−22.5‰) before 8300 cal yr BP and since 500 cal yr BP, while the intervening Early to Late Holocene showed higher δ13CTOC values, indicating a shallow coastal environment. The δ34STS values fluctuating between −35 and +5‰ resembled sedimentation rate change. Based on the changes in the ratios of TOC to TS (C/S ratios), sedimentation rate, and δ34STS, we found five possible periods with higher salinity and intensified anoxic conditions at millennial timescales: 8900–8200, 7950–6500, 5200–4300, 3500–2600, and 2000–1100 cal yr BP. These intensified anoxic conditions seem to have been influenced by increased air temperature and sea-surface temperature conditions, which could have intensified the intensity of thermal stratification (less ventilation and mixing) between surface and bottom waters and resultant anoxic conditions.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605615.CrossRefGoogle Scholar
Berner, R.A., Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12, 365368.2.0.CO;2>CrossRefGoogle Scholar
Bird, M.I., Fifield, L.K., Teh, T.S., Chang, C.H., Shirlaw, N., Lambeck, K., 2007. An inflection in the rate of early mid-Holocene eustatic sea-level rise: a new sea-level curve from Singapore. Estuarine, Coastal and Shelf Science 71, 523536.CrossRefGoogle Scholar
Blaauw, M., 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.CrossRefGoogle Scholar
Canfield, D.E., Farquhar, J., Zerkle, A.L., 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38, 415418.CrossRefGoogle Scholar
Chang, X., Liu, X., Wang, H., Zhuang, G., Ma, Z., Yu, J., Chen, J., 2022. Depositional control on the sulfur content and isotope of sedimentary pyrite from the southeast coast of China since MIS5. Frontiers in Marine Science 9, 1005663.CrossRefGoogle Scholar
Chen, Y.-G., Liu, J.C.L., Shieh, Y.-N., Liu, T.-K., 2004. Late Pleistocene to Holocene environmental changes as recorded in the sulfur geochemistry of coastal plain sediments, southwestern Taiwan. Journal of Asian Earth Sciences 24, 213224.CrossRefGoogle Scholar
Dellwig, O., Watermann, F., Brumsack, H.-J., Gerdes, G., Krumbein, W.E., 2001. Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): a tool for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 359379.CrossRefGoogle Scholar
Diaz, R.J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science 321, 926929.CrossRefGoogle ScholarPubMed
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Hori, K., Tanabe, S., Saito, Y., Karuyama, S., Nguyen, V., Kitamura, A., 2004. Delta initiation and Holocene sea-level change: example from the Song Hong (Red River) delta, Vietnam. Sedimentary Geology 164, 237249.CrossRefGoogle Scholar
Hyun, S., Lee, T., Choi, J.-S., Choi, D.-L., Woo, H.-J., 2003. Geochemical characteristics and heavy metal pollutions in the surface sediments of Gwangyang and Yeosu Bay, south coast of Korea [in Korean]. Journal of the Korean Society of Oceanography 8, 380391.Google Scholar
Irby, I.D., Friedrichs, M.A., Da, F., Hinson, K.E., 2018. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 15, 26492668.CrossRefGoogle Scholar
Ishihara, T., Sugai, T., Hachinohe, S., 2012. Fluvial response to sea-level changes since the latest Pleistocene in the near-coastal lowland, central Kanto Plain, Japan. Geomorphology 147–148, 4960.CrossRefGoogle Scholar
Isono, D., Yamamoto, M., Irino, T., Oba, T., Murayama, M., Nakamura, T., Kawahata, H., 2009. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology 37, 591594.CrossRefGoogle Scholar
Kim, J.C., Eum, C.H., Yi, S., Kim, J.Y., Hong, S.S., Lee, J.Y., 2012. Optically stimulated luminescence dating of coastal sediments from southwestern Korea. Quaternary Geochronology 10, 218223.CrossRefGoogle Scholar
Kim, J.-M., Kennett, J.P., 1998. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae). Marine Micropaleontology 34, 7189.CrossRefGoogle Scholar
Kobashi, T., Menviel, L., Jeltsch-Thömmes, A., Vinther, B.M., Box, J.E., Muscheler, R., Nakaegawa, T., et al., 2017. Volcanic influence on centennial to millennial Holocene Greenland temperature change. Scientific Reports 7, 110.CrossRefGoogle ScholarPubMed
Lamb, A., Wilson, G.P., Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews 75, 2957.CrossRefGoogle Scholar
Lamb, A.L., Vane, C.H., Wilson, G.P., Rees, J.G., Moss-Hayes, Y.L., 2007. Assessing δ13C and C/N ratios from organic material in archived cores as Holocene sea level and palaeoenvironmental indicators in the Humber Estuary, UK. Marine Geology 244, 109128.CrossRefGoogle Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences USA 111, 1529615303.CrossRefGoogle ScholarPubMed
Lee, J., Park, K.T., Lim, J.H., Yoon, J.E., Kim, I.N., 2018. Hypoxia in Korean coastal waters: a case study of the natural Jinhae Bay and artificial Shihwa Bay. Frontiers in Marine Science 5, 70.CrossRefGoogle Scholar
Lim, H.-S., Diaz, R.J., Hong, J.-S., Schaffner, L.C., 2006. Hypoxia and benthic community recovery in Korean coastal waters. Marine Pollution Bulletin 52, 15171526.CrossRefGoogle ScholarPubMed
Lim, J., Lee, J.Y., Hong, S.S., Park, S., Lee, E., Yi, S., 2019. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quaternary Science Reviews 220, 7586.CrossRefGoogle Scholar
Lim, J., Lee, J.Y., Kim, J.C., Hong, S.S., Yang, D.Y., 2015. Holocene environmental change at the southern coast of Korea based on organic carbon isotope (δ13C) and C/S ratios. Quaternary International 384, 160168.CrossRefGoogle Scholar
Lim, J., Yi, S., Han, M., Park, S., Kim, Y., 2022. Evolution of the paleo-Daesan Bay (Nakdong River, South Korea) as a result of Holocene sea level change. Quaternary Research 110, 2637.CrossRefGoogle Scholar
Liu, X., Zhang, M., Li, A., Dong, J., Zhang, K., Gu, Y., Chang, X., Zhuang, G., Li, Q., Wang, H., 2022. Sedimentary pyrites and C/S ratios of mud sediments on the East China Sea inner shelf indicate late Pleistocene–Holocene environmental evolution. Marine Geology 450, 106854.CrossRefGoogle Scholar
Liu, X., Zhang, M., Li, A., Fan, D., Dong, J., Jiao, C., Chang, X., Gu, Y., Zhang, K., Wang, H., 2021. Depositional control on carbon and sulfur preservation onshore and offshore the Oujiang Estuary: Implications for the C/S ratio as a salinity indicator. Continental Shelf Research 227, 104510.CrossRefGoogle Scholar
Liu, X.T., Fike, D., Li, A.C., Dong, J., Xu, F.J., Zhuang, G.C., Rendle-Buhring, R., Wan, S.M., 2019. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology 505, 6675.CrossRefGoogle Scholar
Lyons, T.W., Anbar, A.D., Severmann, S., Scott, C., Gill, B.C., 2009. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences 37, 507534.CrossRefGoogle Scholar
Mackie, E.A.V., Leng, M., Lloyd, J.M., Arrowsmith, C., 2005. Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. Journal of Quaternary Science 20, 303312.CrossRefGoogle Scholar
Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289302.CrossRefGoogle Scholar
Middelburg, J.J., 1991. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochimica et Cosmochimica Acta 55, 815828.CrossRefGoogle Scholar
Morse, J.W., Berner, R.A., 1995. What determines sedimentary C/S ratios? Geochimica et Cosmochimica Acta 59, 10731077.CrossRefGoogle Scholar
Nahm, W.-H., Kim, J.C., Bong, P.-Y., Kim, J.-Y., Yang, D.-Y., Yu, K.-M., 2008. Late Quaternary stratigraphy of the Yeongsan Estuary, southwestern Korea. Quaternary International 176–177, 1324.CrossRefGoogle Scholar
Park, J., Park, J., Yi, S., Kim, J. C., Lee, E., Choi, J., 2019. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula. Scientific Reports 9, 116.Google ScholarPubMed
Pasquier, V., Sansjofre, P., Rabineau, M., Revillon, S., Houghton, J., Fike, D.A., 2017. Pyrite sulfur isotopes reveal glacial− interglacial environmental changes. Proceedings of the National Academy of Sciences USA 114, 59415945.CrossRefGoogle ScholarPubMed
Raiswell, R., Berner, R.A., 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science 285, 710724.Google Scholar
Shin, Y.J., Chough, S.K., Kim, J.W., Woo, J., 2007. Development of depositional systems in the southeastern Yellow Sea during the postglacial transgression. Marine Geology 239, 5982.CrossRefGoogle Scholar
Sim, M.S., Bosak, T., Ono, S., 2011. Large sulfur isotope fractionation does not require disproportionation. Science 333, 7477.CrossRefGoogle Scholar
Stanley, D.J., Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea level rise. Science 265, 228231.CrossRefGoogle ScholarPubMed
Stott, L., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., Lund, S., 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 5659.CrossRefGoogle ScholarPubMed
Tanigawa, K., Hyodo, M., Sato, H., 2013. Holocene relative sea-level change and rate of sea-level rise from coastal deposits in the Toyooka Basin, western Japan. The Holocene 23, 10391051.CrossRefGoogle Scholar
Werne, J.P., Lyons, T.W., Hollander, D.J., Formolo, M.J., Damsté, J.S.S., 2003. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chemical Geology 195, 159179.CrossRefGoogle Scholar
Wilkin, R.T., Arthur, M.A., 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochimica et Cosmochimica Acta 65, 13991416.CrossRefGoogle Scholar
Williams, J., Dellapenna, T., Lee, G.-H., Louchourarn, P., 2014. Sedimentary impacts of anthropogenic alterations on the Yeongsan Estuary, South Korea. Marine Geology 357, 256271.CrossRefGoogle Scholar
Woolfe, K.J., Dale, P.J., Brunskill, G.J., 1995. Sedimentary C/S relationships in a large tropical estuary: Evidence for refractory carbon inputs from mangroves. Geo-Marine Letters 15, 140144.CrossRefGoogle Scholar
Yang, D.Y., Kim, J.-Y., Nahm, W.-H., Ryu, E., Yi, S., Kim, J.C., Lee, J.-Y., Kim, J.-K., 2008. Holocene wetland environmental change based on major element concentrations and organic contents from the Cheollipo coast, Korea. Quaternary International 176–177, 143155.CrossRefGoogle Scholar
Yu, F., Zong, Y., Lloyd, J.M., Huang, G., Leng, M.J., Kendrick, C., Lamb, A.L., Yim, W.W.S., 2010. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuarine, Coastal and Shelf Science 87, 618630.Google Scholar
Yu, F., Zong, Y., Lloyd, J.M., Leng, M.J., Switzer, A.D., Yim, W.W.-S., 2011. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China. The Holocene 22, 705715.CrossRefGoogle Scholar
Zhan, Q., Wang, Z., Xie, Y., Xie, J., He, Z., 2011. Assessing C/N and δ13C as indicators of Holocene sea level and freshwater discharge changes in the subaqueous Yangtze Delta, China. The Holocene 22, 697704.CrossRefGoogle Scholar
Zong, Y., Huang, K., Yu, F., Zheng, Z., Switzer, A.D., Huang, G., Wang, N., Tang, M., 2012. The role of sea-level rise, monsoonal discharge and the palaeolandscape in the early Holocene evolution of the Pearl River delta, southern China. Quaternary Science Reviews 54, 7788.CrossRefGoogle Scholar
Zong, Y., Lloyd, J.M., Leng, M.J., Yim, W.W.-S., Huang, G., 2006. Reconstruction of Holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. The Holocene 16, 251263.CrossRefGoogle Scholar