Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T04:11:03.977Z Has data issue: false hasContentIssue false

Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation

Published online by Cambridge University Press:  08 April 2016

Andrew Sillen*
Affiliation:
University Museum, University of Pennsylvania, and Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Under conditions of normal calcium metabolism, strontium/calcium ratios (Sr/Ca) have been shown to reflect the trophic level of contemporary and recent terrestrial fauna. These ratios therefore offer a potential means of studying fossil ecosystems and the diet of prehistoric humans. In cases in which suitable controls have demonstrated the preservation of biogenic Sr/Ca, it has been possible to investigate the proportionate importance of meat vs. vegetable foods in the diets of prehistoric humans. However, diagenetic change after interment has made it impossible to discern biogenic Sr/Ca in faunal and human skeletons over 15,000 y b.p. A procedure is investigated for the analysis of biogenic and diagenetic apatite in vertebrate fossils, on the basis of solubility differences among carbonate, hydroxy-, and fluorapatites. When applied to the 2 ma b.p. fauna of the Omo Basin (Ethiopia), distinct characterization of the herbivore, omnivore, and carnivore fauna in conformity with trophism was discerned, in spite of anomalous Sr/Ca of one highly specialized carnivore, Homotherium. Possible metabolic and/or taphonomic explanations of this anomaly are discussed, and future basic research into the solubility profile procedure is outlined.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, G. V., Nusbaum, R. E., and MacDonald, N. S. 1956. The relative retention of strontium and calcium in bone tissue. J. Biol. Chem. 218:911919.Google Scholar
Boaz, N. and Hampel, J. 1978. Strontium content of fossil tooth enamel and diet of early hominids. J. Paleontol. 52:928933.Google Scholar
Biltz, R. M. and Pellegrino, D. 1977. The nature of bone carbonate. Clin. Orthop. Rel. Res. 129:279292.Google Scholar
Blumenthal, N. C., Betts, F., and Posner, A. S. 1975. Effect of carbonate and biological macromoleules on formation and properties of hydroxyapatite. Calcif. Tiss. Res. 18:8190.CrossRefGoogle Scholar
Brain, C. K. 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. Univ. Chicago Press; Chicago. 365 pp.Google Scholar
Brown, W. E., Gregory, T. M., and Chow, L. C. 1977. Effects of fluoride on enamel solubility and cariostasis. Caries Res. 11:118141.CrossRefGoogle ScholarPubMed
Bunn, H. T. 1983. Evidence on the diet and subsistence patterns of Plio-Pleistocene Hominids at Koobi Fora, Kenya, and Olduvai Gorge, Tanzania. Pp. 2030. In: Clutton-Brock, J. and Grigson, C., eds. Animals and Archaeology, vol. 1. BAR International Series; Oxford.Google Scholar
Crommelin, D. J., Higuchi, W. J., Fox, J. L., Spooner, P. J., and Katdare, A. V. 1983. Dissolution rate behavior of hydroxyapatite-fluorapatitie mixtures. Caries Res. 17:289329.Google Scholar
Elias, R. W., Hirao, Y., and Patterson, C. C. 1982. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 46:25612580.Google Scholar
Ewer, R. F. 1954. Sabre-tooth tigers. New Biology. 17:2740.Google Scholar
Fiske, C. H. and SubbaRow, Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66:375400.Google Scholar
Heller, R. A. 1978. Canidae. Pp. 626628. In: Fowler, M. E., ed. Zoo and Wild Animal Medicine. W. B. Saunders; Philadelphia.Google Scholar
Hogue, D. S., Pond, W., Comar, C. L., Alexander, L., and Hardy, E. 1961. Comparative utilization of dietary calcium and Sr-90 by pigs and sheep. J. Anim. Sci. 20:514517.Google Scholar
Howell, F. C. 1978. The Hominidae. Pp. 154248. In: Maglio, V. J. and Cooke, H. B. S., eds. Evolution of African Mammals. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Howell, F. C. and Petter, G. 1976. Carnivora from Omo Group Formations, Southern Ethiopia. Pp. 314331. In: Coppens, Y., Howell, F. C., Isaac, G. L., and Leakey, R. E. F., eds. Earliest Man and Environments in the Lake Rudolf Basin. Univ. Chicago Press; Chicago.Google Scholar
Hutchin, M. E. and Vaughan, B. E. 1968. Relation between simultaneous Ca and Sr transport rates in isolated segments of vetch, barley, and pine roots. Plant Physiol. 43:19131918.Google Scholar
Keeley, L. H. and Toth, N. 1981. Microwear polishes on early stone tools from Koobi Fora, Kenya. Nature. 293:464465.Google Scholar
Kingdon, J. 1979. East African Mammals, an Atlas of Evolution in Africa. Vol. III B (Large Mammals). Academic Press; New York. 409 pp.Google Scholar
Klos, H. G. and Lang, E. M. 1982. Diseases and treatment of wild animals in zoos, game parks, circuses and private collections. Pp. 1453. In: Goltenboth, R. and Jarofke, D., eds. Handbook of Zoo Medicine. Van Nostrand Reinhold; New York.Google Scholar
Kostial, K., Gruden, N., and Durakovic, A. 1969. Intestinal absorption of calcium-47 and strontium-85 in lactating rats. Calcif. Tis. Res. 4:1319.Google Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. 1984. Ancient human diet from inorganic analysis of bone. Acc. Chem. Res. 17:298305.Google Scholar
Leakey, R. E. 1976. An overview of the Hominidae from East Rudolf, Kenya. Pp. 476487. In: Coppens, Y., Howell, F. C., Isaac, G. Ll., and Leakey, R. E., eds. Earliest Man and Environments in the Lake Rudolf Basin. Univ. Chicago Press; Chicago.Google Scholar
Leakey, R. E., Leakey, M. G., and Behrensmeyer, A. K. 1978. The Hominid Catalogue. Pp. 198288. In: Leakey, M. G. and Leakey, R. E., Koobi Fora Research Project Vol. 1, The Fossil Hominids and an Introduction to their Context, 1968–1974. Clarendon Press; Oxford.Google Scholar
LeGeros, R. Z. 1981. Consequence of fluoride incorporation on some properties of apatities. Pp. 148149. In: Chronicles of the 58th IADR General Session. Osaka 1980.Google Scholar
LeGeros, R. S. and Tung, M. S. 1983. Chemical stability of carbonate- and fluoride-containing apatities. Caries Res. 17:419429.Google Scholar
Lengemann, F. W. 1963. Over-all aspects of calcium and strontium absorption. Pp. 8596. In: Wasserman, R. H., ed. The Transfer of Calcium and Strontium Across Biological Membranes. Academic Press; New York.Google Scholar
Likins, R. C., McCann, H. G., Posner, A. S., and Scott, D. B. 1960. Comparative fixation of calcium and strontium by synthetic hydroxyapatite. J. Biol. Chem. 235:21522156.Google Scholar
Moreno, E., Kresak, M., and Zahradnick, R. G. 1977. Physiochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res. 11:141171.Google Scholar
Nelson, B., Schoeninger, M. J., and de Niro, M. J. 1983. Strontium isotopic evidence for diagenetic alteration of bone: consequences for diet reconstruction. Geol. Soc. Am. 15:652.Google Scholar
Nelson, D. G. A., Featherstone, J. D. B., Duncan, J. F., and Cutress, T. W. 1983. Effect of carbonate and fluoride on the dissolution behavior of synthetic apatities. Caries Res. 17:200211.Google Scholar
Norman, A. 1978. Calcium and Phosphorus Absorption. Pp. 93132. In: Lawson, D. E. M., ed. Vitamin D. Academic Press; New York.Google Scholar
Okazaki, M., Moriwaki, Y., Aoba, T., Doi, Y., and Takahashi, J. 1981. Solubility behavior of CO3 apatites in relation to crystallinity. Caries Res. 15:477483.Google Scholar
Okazaki, M., Takahashi, J., and Kmura, H. 1982. Crystallinity solubility and dissolution rate behavior of fluoridated CO3 apatities. J. Biomed. Mater. Res. 16:851860.Google Scholar
Potts, R. 1984. Home Bases and early Hominids. Amer. Sci. 2:338347.Google Scholar
Potts, R. and Shipman, P. 1981. Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania. Nature. 291:577660.CrossRefGoogle Scholar
Price, T. D., Schoeninger, M. J., and Armelagos, G. J. 1985. Bone chemistry and past behavior: an overview. J. Human Evol. 14:419447.CrossRefGoogle Scholar
Rouser, G., Fleisher, S., and Yamamato, A. 1970. Two dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 5:494497.CrossRefGoogle ScholarPubMed
Sanzharova, N. I. 1978. Changes in the ratio of strontium-90 to calcium during uptake from soil by herbaceous plants. Mosc. Univer. Soil Sci. Bull. 33:4243.Google Scholar
Sillen, A. 1981a. Strontium and diet at Hayonim Cave, Israel; An evaluation of the strontium/calcium technique for investigating prehistoric diets. Ph.D. diss. 190 pp. Univ. Pennsylvania; Philadelphia.Google Scholar
Sillen, A. 1981b. Strontium and diet at Hayonim Cave. Amer. J. Phys. Anthrop. 56:131137.Google Scholar
Sillen, A. and Kavanagh, M. 1982. Strontium and paleodietary research: a review. Yearbook Phys. Anthrop. 25:6790.Google Scholar
Spencer, H., Li, M., Samachson, J., and Laszlo, D. 1960. Metabolism of strontium-85 and calcium-45 in Man. Metabolism 9:916925.Google Scholar
Spencer, H., Warren, J. M., and Kramer, L., and Samachson, J. 1973. Passage of calcium and strontium across the intestine in Man. Clin. Orthop. Rel. Res. 91:255334.Google Scholar
Thompson, R. C. 1963. Factors and conditions modifying the absorption and retention of chronically ingested radiostrontium. Pp. 393404. In: Wasserman, R. H., ed. The Transfer of Calcium and Strontium Across Biological Membranes. Academic Press; New York.Google Scholar
Toots, H. and Voorhies, M. R. 1965. Strontium in fossil bones and the reconstruction of food chains. Science. 124:405407.Google Scholar
Turner, A. 1984. Panthera crassidens Broom, 1948. The cat that never was? S. Afr. J. Sci. 80:227233.Google Scholar
Vose, P. B. and Koontz, H. V. 1959. The uptake of strontium by pasture plants and its possible significance in relation to the fall-out of strontium-90. Nature. 183:14471448.Google Scholar
Walker, A. 1981. The Koobi Fora Hominids and their bearing on the origins of the genus Homo. Pp. 193215. In: Sigmon, B. A. and Cybulski, J. S., eds. Homo erectus Papers in Honor of Davidson Black. Univ. Toronto Press; Toronto.Google Scholar
Walser, M. and Robinson, B. 1963. Renal excretion and tubular resorption of calcium and strontium. Pp. 305326. In: Wasserman, R. H., ed. The Transfer of Calcium and Strontium Across Biological Membranes. Academic Press; New York.Google Scholar
Wolpoff, M. H. 1980. Paleoanthropology. Knopf; New York.Google Scholar