Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T21:36:48.604Z Has data issue: false hasContentIssue false

Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record

Published online by Cambridge University Press:  08 February 2016

Peter Wilf
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802 and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109. E-mail: pwilf@psu.edu
Kirk R. Johnson
Affiliation:
Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205. E-mail: KJohnson@dmns.org

Abstract

We present a quantitative analysis of megafloral turnover across the Cretaceous/Paleogene boundary (K/T) based on the most complete record, which comes from the Williston Basin in southwestern North Dakota. More than 22,000 specimens of 353 species have been recovered from 161 localities in a stratigraphic section that is continuous across and temporally calibrated to the K/T and two paleomagnetic reversals. Floral composition changes dynamically during the Cretaceous, shifts sharply at the K/T, and is virtually static during the Paleocene. The K/T is associated with the loss of nearly all dominant species, a significant drop in species richness, and no subsequent recovery. Only 29 of 130 Cretaceous species that appear in more than one stratigraphic level (non-singletons) cross the K/T. Only 11 non-singletons appear first during the Paleocene. The survivors, most of which were minor elements of Cretaceous floras, dominate the impoverished Paleocene floras. Confidence intervals show that the range terminations of most Cretaceous plant taxa are well sampled. We infer that nearly all species with last appearances more than about 5 m below (approximately 70 Kyr before) the K/T truly disappeared before the boundary because of normal turnover dynamics and climate changes; these species should not be counted as K/T victims. Maxima of last appearances occur from 5 to 3 m below the K/T. Interpretation of these last appearances at a fine stratigraphic scale is problematic because of local facies changes, and megafloral data alone, even with confidence intervals, are not sufficient for precise location of an extinction horizon. For this purpose, we rely on high-resolution palynological data previously recovered from continuous facies in the same sections; these place a major plant extinction event precisely at the K/T impact horizon. Accordingly, we interpret the significant cluster of last appearances less than 5 m below the K/T as the signal of a real extinction at the K/T that is recorded slightly down section. A maximum estimate of plant extinction, based on species lost that were present in the uppermost 5 m of Cretaceous strata, is 57%. Palynological data, with higher stratigraphic but lower taxonomic resolution than the megafloral results, provide a minimum estimate of a 30% extinction. The 57% estimate is significantly lower than previous megafloral observations, but these were based on a larger thickness of latest Cretaceous strata, including most of a globally warm interval, and were less sensitive to turnover before the K/T. The loss of one-third to three-fifths of plant species supports a scenario of sudden ecosystem collapse, presumably caused by the Chicxulub impact.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208:10951108.CrossRefGoogle Scholar
Ash, A. W., Ellis, B., Hickey, L. J., Johnson, K. R., Wilf, P., and Wing, S. L. 1999. Manual of leaf architecture: morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Smithsonian Institution, Washington, D.C.Google Scholar
Bailey, I. W., and Sinnott, E. W. 1915. A botanical index of Cretaceous and Tertiary climates. Science 41:831834.CrossRefGoogle ScholarPubMed
Barclay, R. S., Johnson, K. R., Betterton, W. J., and Dilcher, D. L. 2003. Stratigraphy, megaflora, and the K-T boundary in the eastern Denver Basin, Colorado. Rocky Mountain Geology 38:4571.CrossRefGoogle Scholar
Barrera, E., and Savin, S. M. 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. Pp. 245282in Barrera, E. and Savin, S. M., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332.CrossRefGoogle Scholar
Beerling, D. J., Lomax, B. H., Upchurch, G. R., Nichols, D. J., Pillmore, C. L., Handley, L. L., and Scrimgeour, C. M. 2001. Evidence for the recovery of terrestrial ecosystems ahead of marine primary production following a biotic crisis at the Cretaceous-Tertiary boundary. Journal of the Geological Society 158:737740.CrossRefGoogle Scholar
Blum, J. D., Chamberlain, C. P., Hingston, M. P., Koeberl, C., Marin, L. E., Schuraytz, B. C., and Sharpton, V. L. 1993. Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364:325327.CrossRefGoogle Scholar
Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. U.S. Geological Survey Professional Paper 375:1119.Google Scholar
Burnham, R. J. 1994. Paleoecological and floristic heterogeneity in the plant-fossil record: an analysis based on the Eocene of Washington. U.S. Geological Survey Bulletin 2085-B:136.Google Scholar
Burnham, R. J., Wing, S. L., and Parker, G. G. 1992. The reflection of deciduous forest communities in leaf litter: implications for autochthonous litter assemblages from the fossil record. Paleobiology 18:3049.CrossRefGoogle Scholar
Chaney, R. W., and Sanborn, E. I. 1933. The Goshen flora of west central Oregon. Carnegie Institution of Washington Publication 439.Google Scholar
Christeson, G. L., Nakamura, Y., Buffler, R. T., Morgan, J., and Warner, M. 2001. Deep crustal structure of the Chicxulub impact crater. Journal of Geophysical Research 106:2175121769.CrossRefGoogle Scholar
Crane, P. R., and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675678.CrossRefGoogle ScholarPubMed
Crane, P. R., and Stockey, R. A. 1985. Growth and reproductive biology of Joffrea speirsii gen. et sp. nov., a Cercidiphyllum-like plant from the Late Paleocene of Alberta, Canada. Canadian Journal of Botany 63:340364.CrossRefGoogle Scholar
Crane, P. R., Manchester, S. R., and Dilcher, D. L. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana (Geology) 20:163.Google Scholar
D'Hondt, S., Herbert, T. D., King, J., and Gibson, C. 1996. Planktic foraminifera, asteroids and marine production: death and recovery at the Cretaceous-Tertiary boundary. Pp. 303317in Ryder, G., Fastovsky, D., and Gartner, S., eds. The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307.Google Scholar
Dorf, E. 1940. Relationship between floras of the type Lance and Fort Union Formations. Geological Society of America Bulletin 51:213236.CrossRefGoogle Scholar
Ellis, B., Johnson, K. R., and Dunn, R. E. 2003. Evidence for an in situ early Paleocene rainforest from Castle Rock, Colorado. Rocky Mountain Geology 38:73100.CrossRefGoogle Scholar
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.CrossRefGoogle ScholarPubMed
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26S:74102.CrossRefGoogle Scholar
Gemmill, C. E. C., and Johnson, K. R. 1997. Paleoecology of a late Paleocene (Tiffanian) megaflora from the northern Great Divide Basin. Palaios 12:439448.CrossRefGoogle Scholar
Hartman, J. H., Johnson, K. R., and Nichols, D. J., eds. 2002. The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361.CrossRefGoogle Scholar
Hickey, L. J. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota. Geological Society of America Memoir 150:1183.Google Scholar
Hickey, L. J. 1979. A revised classification of the architecture of dicotyledonous leaves. Pp. 2539in Metcalfe, C. R. and Chalk, L., eds. Anatomy of the dicotyledons, (2d ed). Clarendon, Oxford.Google Scholar
Hickey, L. J. 1981. Land plant evidence compatible with gradual, not catastrophic change at the end of the Cretaceous. Nature 292:529531.CrossRefGoogle Scholar
Hickey, L. J. 1984. Changes in the angiosperm flora across the Cretaceous-Tertiary boundary. Pp. 279313in Berggren, W. A. and Van Couvering, J. A., eds. Catastrophes in Earth history: the new uniformitarianism. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Hicks, J. F., Johnson, K. R., Obradovich, J. D., Tauxe, L., and Clark, D. 2002. Magnetostratigraphy and geochronology of the Hell Creek and basal Fort Union Formations of southwestern North Dakota and a recalibration of the age of the Cretaceous-Tertiary boundary. Pp. 3555in Hartman, et al. 2002.CrossRefGoogle Scholar
Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, A., Jacobsen, S. B., and Boynton, W. V. 1991. Chicxulub crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867871.2.3.CO;2>CrossRefGoogle Scholar
Hoffman, G. L., and Stockey, R. A. 1999. Geological setting and paleobotany of the Joffre Bridge Roadcut fossil locality (Late Paleocene), Red Deer Valley, Alberta. Canadian Journal of Earth Sciences 36:20732084.CrossRefGoogle Scholar
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468479.2.0.CO;2>CrossRefGoogle Scholar
Hotton, C. L. 2002. Palynology of the Cretaceous-Tertiary boundary in central Montana: evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions. Pp. 473501in Hartman, et al. 2002.CrossRefGoogle Scholar
Izett, G. A., Dalrymple, G. B., and Snee, L. W. 1991.40Ar/39Arage of Cretaceous-Tertiary boundary tektites from Haiti. Science 252:15391542.CrossRefGoogle ScholarPubMed
Jablonski, D. 2002. Survival without recovery after mass extinctions. Proceedings of the National Academy of Sciences USA 99:81398144.CrossRefGoogle ScholarPubMed
Johnson, K. R. 1992. Leaf-fossil evidence for extensive floral extinction at the Cretaceous/Tertiary boundary, North Dakota, USA. Cretaceous Research 13:91117.CrossRefGoogle Scholar
Johnson, K. R. 1996. Description of seven common plant megafossils from the Hell Creek Formation (Late Cretaceous: late Maastrichtian), North Dakota, South Dakota, and Montana. Proceedings of the Denver Museum of Natural History, series 3,3:148.Google Scholar
Johnson, K. R. 2002. The megaflora of the Hell Creek and lower Fort Union formations in the western Dakotas: Vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression. Pp. 329391in Hartman, et al. 2002.CrossRefGoogle Scholar
Johnson, K. R., and Ellis, B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science 296:23792383.CrossRefGoogle ScholarPubMed
Johnson, K. R., and Hickey, L. J. 1990. Megafloral change across the Cretaceous / Tertiary boundary in the northern Great Plains and Rocky Mountains, U.S.A. Pp. 433444in Sharpton, V. L. and Ward, P. D., eds. Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247.CrossRefGoogle Scholar
Johnson, K. R., Nichols, D. J., Attrep, M. Jr., and Orth, C. J. 1989. High-resolution leaf-fossil record spanning the Cretaceous-Tertiary boundary. Nature 340:708711.CrossRefGoogle Scholar
Johnson, K. R., Reynolds, M. L., Werth, K. W., and Thomasson, J. R. 2003. Overview of the Late Cretaceous, early Paleocene, and early Eocene megafloras of the Denver Basin, Colorado. Rocky Mountain Geology 38:101120.CrossRefGoogle Scholar
Kirchner, J. W., and Weil, A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177180.CrossRefGoogle ScholarPubMed
Kovach, W. L. 2000. MVSP—a multivariate statistical package for Windows, Version 3.12c. Kovach Computing Services, Petraeth, Wales.Google Scholar
Krassilov, V. A. 1975. Climatic changes in eastern Asia as indicated by fossil floras. II. Late Cretaceous and Danian. Palaeogeography, Palaeoclimatology, Palaeoecology 17:157172.CrossRefGoogle Scholar
Krassilov, V. A. 1978. Late Cretaceous gymnosperms from Sakhalin, U.S.S.R., and the terminal Cretaceous event. Palaeontology 21:893905.Google Scholar
Krogh, T. E., Kamo, S. L., Sharpton, V. L., Marin, L. E., and Hildebrand, A. R. 1993. U-Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366:731734.CrossRefGoogle Scholar
Labandeira, C. C., Johnson, K. R., and Lang, P. 2002a. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. Pp. 297327in Hartman, et al. 2002.Google Scholar
Labandeira, C. C., Johnson, K. R., and Wilf, P. 2002b. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA 99:20612066.CrossRefGoogle ScholarPubMed
Leffingwell, H. A. 1970. Palynology of the Lance (Late Cretaceous) and Fort Union (Paleocene) formations of the type Lance area, Wyoming. Pp. 164in Kosanke, R. M. and Cross, A. T., eds. Symposium on palynology of the Late Cretaceous and Tertiary. Geological Society of America Special Paper 127.CrossRefGoogle Scholar
Li, L. Q., and Keller, G. 1998. Abrupt deep-sea warming at the end of the Cretaceous. Geology 26:995998.2.3.CO;2>CrossRefGoogle Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.CrossRefGoogle Scholar
MacGinitie, H. D. 1941. A middle Eocene flora from the central Sierra Nevada. Carnegie Institution of Washington Publication 534.Google Scholar
Manchester, S. R. 2002. Leaves and fruits of Davidia (Cornales) from the Paleocene of North America. Systematic Botany 27:368382.Google Scholar
Manchester, S. R., and Chen, Z. D. 1998. A new genus of Coryloideae (Betulaceae) from the Paleocene of North America. International Journal of Plant Sciences 159:522532.CrossRefGoogle Scholar
Manchester, S. R., and Dilcher, D. L. 1997. Reproductive and vegetative morphology of Polyptera (Juglandaceae) from the Paleocene of Wyoming and Montana. American Journal of Botany 84:649663.CrossRefGoogle ScholarPubMed
Manchester, S. R., Crane, P. R., and Golovneva, L. B. 1999. An extinct genus with affinities to extant Davidia and Cumptotheca (Cornales) from the Paleocene of North America and eastern Asia. International Journal of Plant Sciences 160:188207.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.CrossRefGoogle Scholar
Marshall, C. R., and Ward, P. D. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274:13601363.CrossRefGoogle ScholarPubMed
McIver, E. E., and Basinger, J. F. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontographica Canadiana 10:1167.Google Scholar
McKinney, F. K., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.CrossRefGoogle ScholarPubMed
Nichols, D. J. 2002. Palynology and palynostratigraphy of the Hell Creek Formation in North Dakota: a microfossil record of plants at the end of Cretaceous time. Pp. 393456in Hartman, et al. 2002.Google Scholar
Nichols, D. J., and Johnson, K. R. 2002. Palynology and microstratigraphy of Cretaceous-Tertiary boundary sections in southwestern North Dakota. Pp. 95143in Hartman, et al. 2002.Google Scholar
Nichols, D. J., Jarzen, D. M., Orth, C. J., and Oliver, P. Q. 1986. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan. Science 231:714717.CrossRefGoogle ScholarPubMed
Norris, R. D., Huber, B. T., and Self-Trail, J. 1999. Synchroneity of the K-T oceanic mass extinction and meteorite impact: blake Nose, western North Atlantic. Geology 27:419422.2.3.CO;2>CrossRefGoogle Scholar
Olsson, R. K., Wright, J. D., and Miller, K. G. 2001. Paleobiogeography of Pseudotextularia elegans during the latest Maastrichtian global warming event. Journal of Foraminiferal Research 31:275282.CrossRefGoogle Scholar
Orth, C. J., Gilmore, J. S., Knight, J. D., Pillmore, C. L., Tschudy, R. H., and Fassett, J. E. 1981. An iridium abundance anomaly at the palynological Cretaceous-Tertiary boundary in northern New Mexico. Science 214:13411342.CrossRefGoogle ScholarPubMed
Patzkowsky, M. E. 1995. A hierarchical branching model of evolutionary radiations. Paleobiology 21:440460.CrossRefGoogle Scholar
Payne, J. L. 2003. Applicability and resolving power of statistical tests for simultaneous extinction events in the fossil record. Paleobiology 29:3751.2.0.CO;2>CrossRefGoogle Scholar
Pearson, D. A., Schaefer, T., Johnson, K. R., and Nichols, D. J. 2001. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary. Geology 29:3942.2.0.CO;2>CrossRefGoogle Scholar
Pearson, D. A., Schaefer, T, Johnson, K. R., Nichols, D. J., and Hunter, J. P. 2002. Vertebrate biostratigraphy of the Hell Creek Formation in southwestern North Dakota and northwestern South Dakota. Pp. 145167in Hartman, et al. 2002.Google Scholar
Phillips, O. L., and Miller, J. S. 2002. Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. Missouri Botanical Garden Press, St. Louis.Google Scholar
Pigg, K. B., and Stockey, R. A. 1991. Platanaceous plants from the Paleocene of Alberta, Canada. Review of Palaeobotany and Palynology 70:125146.CrossRefGoogle Scholar
Pope, K. O. 2002. Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology 30:99102.2.0.CO;2>CrossRefGoogle Scholar
Saito, T, Yamanoi, T., and Kaiho, K. 1986. End-Cretaceous devastation of terrestrial flora in the boreal Far East. Nature 323:253255.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sheehan, P. M., Fastovsky, D E., Hoffmann, R. G., Berghaus, C. B., and Gabriel, D. L. 1991. Sudden extinction of the dinosaurs: latest Cretaceous, upper Great Plains, USA. Science 254:835839.CrossRefGoogle ScholarPubMed
Sheehan, P. M., Fastovsky, D. E., Barreto, C., and Hoffmann, R. G. 2000. Dinosaur abundance was not declining in a “3 m gap” at the top of the Hell Creek Formation, Montana and North Dakota. Geology 28:523526.2.0.CO;2>CrossRefGoogle Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Pp. 291296in Silver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411421.CrossRefGoogle Scholar
Sweet, A. R., and Braman, D. R. 2001. Cretaceous-Tertiary palynofloral perturbations and extinctions within the Aquilapollenites Phytogeographic Province. Canadian Journal of Earth Sciences 38:249269.Google Scholar
Swisher, C. C., Grajales-Nishimura, J. M., Montanari, A., Margolis, S. V., Claeys, P., Alvarez, W., Renne, P., Cedillo-Pardo, E., Maurrasse, F. J. M. R., Curtis, G. H., Smit, J., and McWilliams, M. O. 1992. Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954958.CrossRefGoogle ScholarPubMed
Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P., and Covey, C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics 35:4178.CrossRefGoogle Scholar
Tschudy, R. H. 1970. Palynology of the Cretaceous-Tertiary boundary in the northern Rocky Mountains and Mississippi Embayment regions. Pp. 65111in Kosanke, R. M. and Cross, A. T., eds. Symposium on palynology of the Late Cretaceous and early Tertiary. Geological Society of America Special Paper 127.CrossRefGoogle Scholar
Tschudy, R. H., Pillmore, C. L., Orth, C. J., Gilmore, J. S., and Knight, J. D. 1984. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, Western Interior. Science 225:10301032.CrossRefGoogle ScholarPubMed
Vajda, V., and Raine, J. I. 2003. Pollen and spores in marine Cretaceous/Tertiary boundary sediments at mid-Waipara River, North Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 46:255273.CrossRefGoogle Scholar
Vajda, V., Raine, J. I., and Hollis, C. J. 2001. Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294:17001702.CrossRefGoogle ScholarPubMed
Wilf, P. 1997. When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology 23:373390.CrossRefGoogle Scholar
Wilf, P. 2000. Late Paleocene-early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112:292307.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P., Johnson, K. R., and Huber, B. T. 2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences USA 100:599604.CrossRefGoogle ScholarPubMed
Wing, S. L., and Harrington, G. J. 2001. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539563.2.0.CO;2>CrossRefGoogle Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.CrossRefGoogle Scholar
Wing, S. L., Bao, H., and Koch, P. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. Pp. 197237in Huber, B. T., MacLeod, K., and Wing, S. L., eds. Warm climates in Earth history. Cambridge University Press, Cambridge.Google Scholar
Wolfe, J. A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions in the Northern Hemisphere and Australasia. U.S. Geological Survey Professional Paper 1106.CrossRefGoogle Scholar
Wolfe, J. A., and Upchurch, G. R. 1986. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324:148152.CrossRefGoogle Scholar
Wolfe, J. A., and Upchurch, G. R. 1987. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proceedings of the National Academy of Sciences USA 84:50965100.CrossRefGoogle ScholarPubMed
Wolfram, S. 2003. The Mathematica book, 5th ed.Wolfram Media, Champaign, Ill.Google Scholar