Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-02T00:51:06.616Z Has data issue: false hasContentIssue false

Mechanically Alloyed Amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 Alloys with Supercooled Liquid Region

Published online by Cambridge University Press:  31 January 2011

L. C. Zhang
Affiliation:
Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, CAS, 72 Wenhua Road, Shenyang, 110016 China
J. Xu*
Affiliation:
Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, CAS, 72 Wenhua Road, Shenyang, 110016 China
E. Ma
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
*
a)Address all correspondence to this author. e-mail: jianxu@imr.ac.cn
Get access

Abstract

A high-energy ball milling procedure has been developed to produce amorphous alloys in Ti50(Cu0.45Ni0.55)44−xAlxSi4B2 (x= 0, 4, 8, 12) powder mixtures. The milling products were characterized using x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The Ti-based amorphous alloy powders prepared through this solid-state process exhibit a well-defined glass transition and a supercooled liquid region (ΔTx =64 K) close to the largest achieved so far for Ti-based undercooled melts. The substitution of Al for Cu and Ni has beneficial effects on stabilizing the supercooled liquid. Residual nanocrystals of the αTi structure are uniformly dispersed in the amorphous matrix. The composite alloy powders offer the potential for consolidation in the supercooled liquid region to bulk lightweight amorphous alloys and the possibility to attain desirable mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johnson, W.L., Mater. Res. Soc. Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
Zhang, T. and Inoue, A., Mater. Trans. JIM 39, 1001 (1998).CrossRefGoogle Scholar
Inoue, A., Amiya, K., Katsuya, A., and Masumoto, T., Mater. Trans. JIM 36, 858 (1995).CrossRefGoogle Scholar
Zhang, T. and Inoue, A., Mater. Trans. JIM 40, 301 (1999).CrossRefGoogle Scholar
Zhang, T. and Inoue, A., Mater. Sci. Eng. A 304–306, 771 (2001).CrossRefGoogle Scholar
Nishiyama, N. and Inoue, A., Mater. Trans. JIM 38, 464 (1997).CrossRefGoogle Scholar
Inoue, A. and Zhang, T., Mater. Trans. JIM 37, 185 (1996).CrossRefGoogle Scholar
Johnson, W.L., Mater. Sci. Forum 225–227, 35 (1996).CrossRefGoogle Scholar
Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Int. J. Powder Metall. 33, 50 (1997).Google Scholar
Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Appl. Phys. Lett. 67, 2008 (1995).CrossRefGoogle Scholar
Kato, H., Kawamura, Y., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A 226–228, 458 (1997).CrossRefGoogle Scholar
Amiya, K., Nishiyama, N., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A 179–180, 692 (1994).CrossRefGoogle Scholar
Seidel, M., Eckert, J., Bauer, H-D., and Schultz, L., Mater. Sci. Forum 225–227, 119 (1996).CrossRefGoogle Scholar
Sordelet, D.J., Rozhkova, E., Huang, P., Wheelock, P.B., Besser, Kramer, M.J., M. Calvo-Dahlborg, and Dahlborg, U., Mater. Res. 17, 186 (2002).CrossRefGoogle Scholar
Choi-Yim, H. and Johnson, W.L., Appl. Phys. Lett. 71, 3808 (1997).CrossRefGoogle Scholar
Conner, R.D., Choi-Yim, H., and Johnson, W.L., J. Mater. Res. 14, 3292 (1999).CrossRefGoogle Scholar
Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L., Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
Seidel, M., Eckert, J., and Schultz, L., J. Appl. Phys. 77, 5446 (1995).CrossRefGoogle Scholar
Seidel, M., Eckert, J., Bächer, I., Reibold, M., and Schultz, L., Acta Mater. 48, 3657 (2000).CrossRefGoogle Scholar
Sagel, A., Wunderlich, R.K., and Fecht, H.J., Mater. Lett. 33, 123 (1997).CrossRefGoogle Scholar
Schwarz, R.B. and Petrich, R.R., J. Less-Common Met. 140, 171 (1988).Google Scholar
Battezzati, L., Enzo, S., Schiffini, L., and Cocco, G., J. Less-Common Met. 145, 301 (1988).CrossRefGoogle Scholar
Politis, C. and Johnson, W.L., J. Appl. Phys. 60, 1147 (1986).CrossRefGoogle Scholar
Baricco, M., Battezzati, L., Soletta, I., Schiffini, L., and Cowlam, N., Mater, Sci. Eng. A 134, 1398 (1991).CrossRefGoogle Scholar
Murty, B.S., Ranganathan, S., and Rao, M. Mohan, Mater. Sci. Eng. A 149, 231 (1992).CrossRefGoogle Scholar
Kim, K.B., Yi, S., Kim, S.H., Kim, W.T., and Kim, D.H., Mater. Sci. Eng. A 300, 148 (2001).CrossRefGoogle Scholar
Zhang, L.C. and Xu, J., Mater. Sci. Forum 386–388, 47 (2002).CrossRefGoogle Scholar
Amiya, K., Nishiyama, N., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A 179–180, 692 (1994).CrossRefGoogle Scholar
Kim, Y-C., Yi, S., Kim, W.T., and Kim, D-H., Mater. Sci. Forum 360–362, 67 (2001).CrossRefGoogle Scholar
Kim, Y.C., Yi, S., Kim, W.T., and Kim, D.H., in Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys, edited by Inoue, A., Yavari, A.R., Johnson, W.L., and Dauskardt, R.H. (Mater. Res. Soc. Symp. Proc. 644, Warrendale, PA, 2001), p. L4.9.1.Google Scholar
Köster, U., Z. Metallkde. 75, 691 (1984).Google Scholar
Azaroff, L. and Buerger, M.J., The Powder Method in X-Ray Crystallography (McGraw-Hill, New York, 1958), p. 238.Google Scholar
Powder Deffraction File No. 18-899, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
Bonetti, E., Cocco, G., Enzo, S., and Valdré, G., Mater. Sci. Technol. 6, 1258 (1990).CrossRefGoogle Scholar
Bonetti, E., Valdré, G., Enzo, S., and Cocco, G., J. Alloys Compd. 194, 331 (1993).Google Scholar
Cocco, G., Soletta, I., Battezzati, L., Baricco, M., and Enzo, S., Philos. Mag. B 61, 473 (1990).CrossRefGoogle Scholar
Schlorke, N., Eckert, J., and Schultz, L., Mater. Sci. Eng. A 226–228, 425 (1997).CrossRefGoogle Scholar
Seidel, M., Eckert, J., Zueco-Rodrigo, E., and Schultz, L., J. Non-Cryst. Solids 205–207, 514 (1996).Google Scholar
Schlorke, N., Eckert, J., and Schultz, L., Mater. Sci. Forum 269–272, 761 (1998).CrossRefGoogle Scholar
Hays, C.C., Kim, C.P., and Johnson, W.L., Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle Scholar
Szuecs, F., Kim, C.P., and Johnson, W.L., Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
Pekarskaya, E., Kim, C.P., and Johnson, W.L., J. Mater. Res. 16, 2513 (2001).CrossRefGoogle Scholar
Inoue, A., Zhang, T., and Kim, Y.H., Mater. Trans. JIM 38, 749 (1997).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Chen, M.W., and Sakurai, T., J. Mater. Res. 15, 2195 (2000).Google Scholar
Kim, Y.H., Inoue, A., and Masumoto, T., Mater. Trans. JIM 32, 599 (1991).CrossRefGoogle Scholar
Inoue, A., Kim, Y.H., and Masumoto, T., Mater. Trans. JIM 33, 487 (1992).Google Scholar
Choi, G.S., Kim, Y.H., Cho, H.K., Inoue, A., and Masumoto, T., Scr. Metall. Mater. 33, 1301 (1995).CrossRefGoogle Scholar