Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-05T05:24:07.029Z Has data issue: false hasContentIssue false

Localized plasmonic fields of nanoantennas enhance second harmonic generation from two-dimensional molybdenum disulfide

Published online by Cambridge University Press:  26 July 2018

Gregory T. Forcherio*
Affiliation:
MicroElectronics-Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783, USA
Luigi Bonacina
Affiliation:
Applied Physics Departement, Université de Genève, Genève 1211, Switzerland
Jean-Pierre Wolf
Affiliation:
Applied Physics Departement, Université de Genève, Genève 1211, Switzerland
D. Keith Roper
Affiliation:
MicroElectronics-Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
*
Address all correspondence to G. T. Forcherio at gregory.t.forcherio.ctr@mail.mil
Get access

Abstract

Frequency-dependence and magnitude of second harmonic generation (SHG) from ~4 × 105 nm2 molybdenum disulfide (MoS2) monolayers was examined in presence of single 150 nm plasmonic gold@silica shell@core nanoantenna monomer and dimers. Quantitative agreement between discrete dipole approximation-calculated fields and measured SHG enhancements was found. SHG from MoS2 was enhanced up to 1.88 × upon deposition of a plasmonic nanoantenna-dimer with 170 nm gap, reaching maximal normalized SHG conversion efficiency of 0.0250%/W. Pump losses attributable to plasmonic damping, e.g., scattering and/or hot-electron injection into MoS2, were apparent. Linear and nonlinear optical activity of MoS2 and nanoantenna controls were compared with literature values.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Forcherio, G.T. and Roper, D.K.: Spectral characteristics of noble metal nanoparticle-molybdenum disulfide heterostructures. Adv. Opt. Mater. 4, 1288 (2016).Google Scholar
2.Palacios, E., Park, S., Butun, S., Lauhon, L., and Aydin, K.: Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna. Appl. Phys. Lett. 111, 031101 (2017).Google Scholar
3.Bhanu, U., Islam, M.R., Tetard, L., and Khondaker, S.I.: Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 4, 5575 (2014).Google Scholar
4.Yu, Y., Ji, Z., Zu, S., Du, B., Kang, Y., Li, Z., Zhou, Z., Shi, K., and Fang, Z.: Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures. Adv. Funct. Mater. 26, 6394 (2016).Google Scholar
5.Forcherio, G.T., Dunklin, J.R., Backes, C., Vaynzof, Y., Benamara, M., and Roper, D.K.: Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping. AIP Adv. 7, 075103 (2017).Google Scholar
6.Clark, D.J., Senthilkumar, V., Le, C.T., Weerawarne, D.L., Shim, B., Jang, J.I., Shim, J.H., Cho, J., Sim, Y., Seong, M.-J., Rhim, S.H., Freeman, A.J., Chung, K.-H., and Kim, Y.S.: Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Phys. Rev. B 90, 121409 (2014).Google Scholar
7.Malard, L.M., Alencar, T.V., Barboza, A.P.M., Mak, K.F., and de Paula, A.M.: Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013).Google Scholar
8.Li, D., Xiong, W., Jiang, L., Xiao, Z., Rabiee Golgir, H., Wang, M., Huang, X., Zhou, Y., Lin, Z., Song, J., Ducharme, S., Jiang, L., Silvain, J.-F., and Lu, Y.: Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano 10, 3766 (2016).Google Scholar
9.Forcherio, G.T., Riporto, J., Dunklin, J.R., Mugnier, Y., Dantec, R.L., Bonacina, L., and Roper, D.K.: Nonlinear optical susceptibility of two-dimensional WS2 measured by hyper Rayleigh scattering. Opt. Lett. 42, 5018 (2017).Google Scholar
10.Fryett, T., Zhan, A., and Majumdar, A.: Cavity nonlinear optics with layered materials. Nanophotonics. 7, 355 (2017).Google Scholar
11.Chen, K., Durak, C., Heflin, J.R., and Robinson, H.D.: Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films. Nano Lett. 7, 254 (2007).Google Scholar
12.Ishifuji, M., Mitsuishi, M., and Miyashita, T.: Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes. J. Am. Chem. Soc. 12, 4418 (2009).Google Scholar
13.Pu, Y., Grange, R., Hsieh, C.L., and Psaltis, D.: Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett. 104, 207402 (2010).Google Scholar
14.Zakharko, Y., Nychyporuk, T., Bonacina, L., Lemiti, M., and Lysenko, V.: Plasmon-enhanced nonlinear optical properties of SiC nanoparticles. Nanotechnology 24, 055703 (2013).Google Scholar
15.Grinblat, G., Rahmani, M., Cortes, E., Caldarola, M., Comedi, D., Maier, S.A., and Bragas, A.V.: High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett. 14, 6660 (2014).Google Scholar
16.Sánchez-García, L., Tserkezis, C., Ramírez, M.O., Molina, P., Carvajal, J.J., Aguiló, M., Díaz, F., Aizpurua, J., and Bausá, L.E.: Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures. Opt. Express 24, 8491 (2016).Google Scholar
17.Metzger, B., Hentschel, M., Schumacher, T., Lippitz, M., Ye, X., Murray, C.B., Knabe, B., Buse, K., and Giessen, H.: Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14, 2867 (2014).Google Scholar
18.Fryett, T.K., Seyler, K.L., Zheng, J., Liu, C., Xu, X., and Majumdar, A.: Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater. 4, 015031 (2016).Google Scholar
19.Wang, Z., Dong, Z., Zhu, H., Jin, L., Chiu, M.-H., Li, L.-J., Xu, Q.-H., Eda, G., Maier, S.A., Wee, A.T.S., Qiu, C.-W., and Yang, J.K.W.: Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano 12, 1859 (2018).Google Scholar
20.Klots, A.R., Newaz, A.K.M., Wang, B., Prasai, D., Krzyzanowska, H., Caudel, D., Ghimire, N.J., Yan, J., Ivanov, B.L., Velizhanin, K.A., Burger, A., Mandrus, D.G., Tolk, N.H., Pantelides, S.T., and Bolotin, K.I.: Probing excitonic states in ultraclean suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014).Google Scholar
21.Wang, C.Y. and Guo, G.Y.: Nonlinear optical properties of transition-metal dichalcogenide MX2 (M = Mo, W; X = S, Se) monolayers and trilayers from first-principles calculations. J. Phys. Chem. C 119, 13268 (2015).Google Scholar
22.Trolle, M.L., Seifert, G., and Pedersen, T.G.: Theory of excitonic second-harmonic generation in monolayer MoS2. Phys. Rev. B 89, 235410 (2014).Google Scholar
23.Mao, N., Chen, Y., Liu, D., Zhang, J., and Xie, L.: Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9, 1312 (2013).Google Scholar
24.Mukherjee, B., Tseng, F., Gunlycke, D., Kumar, K., Eda, G., and Simsek, E.: Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible. Opt. Mater. Express 5, 447 (2015).Google Scholar
25.Palomba, S., Danckwerts, M., and Novotny, L.: Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. Pure Appl. Opt. 11, 114030 (2009).Google Scholar
26.Walsh, G.F. and Dal Negro, L.: Enhanced second harmonic generation from Au nanoparticle arrays by femtosecond laser irradiation. Nanoscale 5, 7795 (2013).Google Scholar
27.McMahon, M.D., Ferrara, D., Bowie, C.T., Lopez, R., and Haglund, R.F. Jr: Second harmonic generation from resonantly excited arrays of gold nanoparticles. Appl. Phys. B 87, 259 (2007).Google Scholar
28.Kadkhodazadeh, S., De Lasson, J.R., Beleggia, M., Kneipp, H., Wagner, J.B., and Kneipp, K.: Scaling of the surface plasmon resonance in gold and silver dimers probed by EELS. J. Phys. Chem. C 118, 5478 (2014).Google Scholar
29.Kumar, S.C., Samanta, G.K., Devi, K., and Ebrahim-Zadeh, M.: High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation. Opt. Express 19, 11152 (2011).Google Scholar
30.Seyler, K.L., Schaibley, J.R., Gong, P., Rivera, P., Jones, A.M., Wu, S., Yan, J., Mandrus, D.G., Yao, W., and Xu, X.: Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407 (2015).Google Scholar
Supplementary material: PDF

Forcherio et al. supplementary material

Forcherio et al. supplementary material 1

Download Forcherio et al. supplementary material(PDF)
PDF 1.1 MB