We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Wall modelling in large-eddy simulation (LES) is of high importance to allow scale resolving simulations of industrial applications. Numerous models were developed and validated for incompressible flows, including a simple quasi-analytical model based on Reichardt's formula that approximates the law of the wall. In this paper, a scaling is proposed to generalize this wall model to highly compressible flows. First, the results of wall-resolved LES (wrLES) of adiabatic compressible turbulent channel flows at $Re_\tau = 1000$ and at centreline Mach numbers of $M_c= 0.76$ and $1.5$ are presented. Then, three potential scalings of the incompressible wall model are proposed, and their a priori performance is evaluated : (i) the Howarth–Stewartson scaling, (ii) an improved Van Driest scaling and (iii) a new scaling obtained from a blending of those two. The results of wall-modelled LES (wmLES) of compressible channel flows using these three models are compared with the reference wrLES data, showing the superior accuracy of the hybrid scaling. The consistency of the new wall model at low Mach numbers is also verified by comparing the results of a wmLES at $M_c= 0.25$ with those of reference incompressible DNS data at $Re_\tau = 1000$ and $5200$. Finally, the proposed wall model is also applied to a turbulent channel flow at $M_c=1.5$ and $Re_\tau =5200$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.