We discuss a new method for plasma enhanced chemical vapor deposition, applied to the epitaxial growth of Si and of Si-Ge heterostructures. Growth rates up to 5 nm/s become possible at substrate temperatures below 600°C, by utilizing very intense but low energy plasmas to crack the reactive gases, SiH4 and GeH4, and to speed up the surface kinetics. The method is applied to the synthesis of step-graded Si-Ge buffer layers, exhibiting the well known cross-hatched surface morphology.