We present a simple parameterization of the effect of open leads in a general circulation model of the atmosphere. We consider only the case where the sea ice distribution is prescribed (i.e., not interactive) and the fraction of open water in the ice is also prescribed and set at the same value at all points in the Southern Hemisphere and a different value in the Northern Hemisphere. We approximate the distribution of sea ice over a model “grid box” as a part of the box being covered by solid ice of uniform thickness and the complement of the box consisting of open water at a fixed -1.8 C. Because of the nonlinearity in the flux computations, separate calculations are performed over the solid sea ice and over the open leads. The net fluxes conveyed to the atmosphere over the grid box are determined by performing the appropriate area-weighted average over the two surface types.
We report on an experiment designed to assess the sensitivity of the modelled climate to the imposition of a 50% concentration in the winter Antarctic sea ice. Significant warming of up to 6°C takes place in the vicinity of and above the Antarctic sea ice and is associated with significant changes in the zonal wind structure. Pressure reductions are simulated over the sea ice, being particularly marked in the Weddell Sea region, and an anomalous east-west aligned ridge is simulated at about 60°S. Very large changes in the sensible heat flux (in excess of 200 Wm−2) are simulated near the coast of Antarctica.