We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous research established that white matter hyperintensities (WMH), a biomarker of small vessel cerebrovascular disease, are strong predictors of cognitive function in older adults and associated with clinical presentation of Alzheimer’s disease (AD), particularly when distributed in posterior brain regions. Secondary prevention clinical trials, such as the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s (A4) study, target amyloid accumulation in asymptomatic amyloid positive individuals, but it is unclear the extent to which small vessel cerebrovascular disease accounts for performance on the primary cognitive outcomes in these trials. The purpose of this study was to examine the relationship between regional WMH volume and performance on the Preclinical Alzheimer Cognitive Composite (PACC) among participants screened for participation in the A4 trial. We also determined whether the association between WMH and cognition is moderated by amyloid positivity status.
Participants and Methods:
We assessed demographic, amyloid PET status, cognitive screening, and raw MRI data for participants in the A4 trial and quantitated regional (by cerebral lobe) WMH volumes from T2-weighted FLAIR in amyloid positive and amyloid negative participants at screening. Cognition was assessed using PACC scores, a z-score sum of four cognitive tests: The Mini-Mental State Examination (MMSE), the Free and Cued Selective Reminding Test, Logical Memory Test, and Digit Symbol Substitution Test. We included 1329 amyloid positive and 329 amyloid negative individuals (981 women; mean age=71.79 years; mean education=16.58 years) at the time of the analysis. The sample included Latinx (n=50; 3%), non-Latinx (n=1590; 95.9%), or unspecified ethnicity (n=18; 1.1%) individuals who identified as American Indian/Alaskan Native (n=7; 0.4%), Asian (n=38; 2.3%), Black/African American (n=41; 2.5%), White (n=1551 ; 93.5%), or unspecified (n=21; 1.3%) race. We first examined the associations of total and regional WMH volume and amyloid positivity on PACC scores (the primary cognitive outcome measure for A4) using separate general linear models and then determined whether amyloid positivity status and regional WMH statistically interacted for those WMH regions that showed significant main effects.
Results:
Both increased WMH, in the frontal and parietal lobes particularly, and amyloid positivity were independently associated with poorer performance on the PACC, with similar magnitude. In subsequent models, WMH volume did not interact with amyloid positivity status on PACC scores.
Conclusions:
Regionally distributed WMH are independently associated with cognitive functioning in typical participants enrolled in a secondary prevention clinical trial for AD. These effects are of similar magnitude to the effects of amyloid positivity on cognition, highlighting the extent to which small vessel cerebrovascular disease potentially drives AD-related cognitive profiles. Measures of small vessel cerebrovascular disease should be considered explicitly when evaluating outcomes in trials, both as potential effect modifiers and as possible targets for intervention or prevention. The findings from this study cannot be generalized widely, as the participants are not representative of the overall population.
Neuropsychiatric symptoms concerning mood are common in Alzheimer's disease (AD), but it is unclear if they are etiologically related to AD pathophysiology or due to factors considered to be non-pathogenic, such as small vessel cerebrovascular disease. New generation clinical trials for AD often enroll participants with evidence of AD pathophysiology, indexed by amyloid PET scanning, but who are cognitively asymptomatic. We used screening data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study to examine the extent to which depressive symptoms are associated with amyloid pathophysiology and small vessel cerebrovascular disease, in the form of white matter hyperintensities (WMH).
Participants and Methods:
The A4 study randomizes cognitively healthy older adults with evidence of amyloid pathophysiology on PET scanning. We used screening data, which included amyloid status (positive, negative) by visual read, amyloid PET standard uptake value ratio (SUVR) in cortical regions, and MRI data acquired in a subset (n=1,197, mean age 71.6 +/- 4.8 years, 57% women) to quantitate total WMH volume. Depressive symptoms were evaluated with the 15-item Geriatric Depression Scale, which we used both as a continuous variable and to define 'depressed' and 'non-depressed' groups, based on a cut score of > 5. We examined whether 1) depressive symptoms and proportion of depressed individuals differed between amyloid positive and negative groups, 2) there is a relationship between amyloid SUVR and depressive symptoms that differs as a function of amyloid positivity status, and 3) there is a relationship between WMH volume and depressive symptoms that differs as a function of amyloid positivity status.
Results:
Although depressive symptom severity did not differ between groups (t=0.14, p=0.88), a greater proportion of individuals were classified as depressed in the amyloid negative group than the amyloid positive group (3.5% vs. 1.9%, X2=4.60, p=0.032). Increased amyloid SUVR was associated with increased GDS scores among amyloid positive individuals (r=0.117, p=0.002) but not among amyloid negative individuals (r=0.006, p=0.68, Positivity Status x SUVR interaction on GDS: ß=0.817, p=0.029). Increased WMH was associated with higher GDS scores (ß=0.105, p=0.017) but not differentially in amyloid positive and negative participants (Positivity Status x WMH interaction on GDS: ß=-0.010, p=0.243).
Conclusions:
These analyses have several implications. First, individuals who are screened to participate in a clinical trial but do not have evidence of amyloidosis may be misattributing concerns about underlying AD pathophysiology to depressive symptoms. Second, the severity of AD pathophysiology, indexed by amyloid PET SUVR, may drive a small increase in depressive symptomatology among individuals over visual diagnostic thresholds. Third, small vessel cerebrovascular changes are additionally associated with depressive symptoms but in a manner that is independent of AD pathophysiology. Overall, depressive symptoms and depression are likely multiply determined among prospective clinical trial participants for preclinical AD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.