We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report fourteen and twenty-eight protocluster candidates at z = 5.7 and 6.6 over 14 and 19 deg2 areas, respectively, selected from 2,230 Lyα emitters (LAEs) photometrically identified with Subaru/Hyper Suprime-Cam (HSC) deep images. Six out of the 42 protocluster candidates include at least 1 spectroscopically confirmed LAEs at redshifts up to z = 6.574. By the comparisons with the cosmological Lyα radiative transfer (RT) model reproducing LAEs with the reionization effects, we find that more than a half of these protocluster candidates might be progenitors of the present-day clusters with a mass of ≳ 1014M⊙. We also investigate the correlation between LAE overdensity and Lya rest-frame equivalent width (EW), because the cosmological Lyα RT model suggests that a slope of EW-overdensity relation is steepened towards the epoch of cosmic reionization (EoR), due to the existence of the ionized bubbles around galaxy overdensities easing the escape of Lyα emission from the partly neutral intergalactic medium. The available HSC data suggest that the slope of the EW-overdensity correlation does not evolve from the post-reionization epoch z = 5.7 to the EoR z = 6.6 beyond the moderately large statistical errors.
We analyse the chemical abundances of stars in the local group dwarf galaxies using the SAGA database. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements.
The phase evolution, nucleation, and sintered ceramics of barium titanate (BaTiO3, BT) powder prepared by solid-state synthesis with an ultrafine starting material (27 m2/g of BaCO3 and 190 m2/g of TiO2) were investigated in this study. Surface diffusion between BaCO3 and TiO2 was observed at a relatively low temperature of 400 °C by transmission electron microscopy. Rapid nucleation of the BT and cubic BT phases was observed at 500 °C by x-ray diffraction. The derivative thermogravimetry curve clearly shows a single step of BT formation at 600 °C. In short, pure BT particles with an average particle size of 250 nm and high tetragonality were prepared by solid-state synthesis, which produced X7R ceramics with high dielectric permittivity, high insulation resistance, and a clear core–shell structure.
We present a new method to investigate the IMF in the early universe from observations of extremely metal-poor (EMP) stars. EMP stars are the low-mass survivors of stars which are formed in the early universe. We can give constraints on the IMF from statistics of the elemental abundances of the EMP stars in the Galactic halo.
We explore the general characteristics of extremely metal-poor (EMP) stars in the Galaxy using the Stellar Abundances for Galactic Archaeology (SAGA) database (Suda et al. 2008, PASJ, 60, 1159). The overall trend of EMP stars suggests that there are at least two types of extra mixing to change the surface abundances of EMP stars. One is to deplete lithium abundance during the early phase of giant branch and another is to decrease C/N ratio by one order of magnitude during the red giant branch or AGB phase. On the other hand, these mixing processes are different from those suggested in the Galactic globular clusters because of the different relations between O, Na, Mg, and Al abundances.
Extremely metal-poor (EMP) stars in the Galactic halo are stars formed in the very early stage of the chemical evolution of the Galaxy. In previous study, we proposed that typical mass of EMP stars are massive, based on observations of carbon-enhanced EMP stars. In this study, we build a merger tree of the Galaxy semi-analytically and follow the chemical evolution along the merger tree. We also consider the effect of binary and high-mass initial mass function(IMF). Resultant theoretical metallicity distribution function (MDF) and abundance distribution are compared with observed metal-poor halo stars.
Extremely metal-poor (EMP) stars are thought to be formed in the low-mass protogalaxies as building blocks of the Milky Way and can be probes to investigate the early stage of galaxy formation and star formation in the early universe. We study the formation history of EMP stars in the Milky Way halo using a new model of chemical evolution based on the hierarchical theory of the galaxy formation. We construct the merging history of the Milky Way halo based on the extended Press-Schechter formalism, and follow the star formation and chemical evolution along the merger tree. The abundance trends and number of low-mass stars predicted in our model are compared with those of observed EMP stars. Additionally, in order to clarify the origin of hyper metal poor stars, we investigate the change of the surface metal abundances of stars by accretion of interstellar matter. We also investigate the pre-enrichment of intergalactic matter by the first supernovae.
We discuss the evolution of both stellar components of cataclysmic variables (CVs) and symbiotic stars from formation to termination, identifying the modes and estimating the rates of mass tranfer as functions of the period of the system, and suggesting how the composition of the nova ejecta depends on the rate of mass transfer, the processes of mixing between accreted material and material in the underlying white dwarf, and the mass-transfer, mixing, and prior outburst history of the system.
Left completely out of the discussion is the disk component which, in CVs and perhaps in some symbiotic stars, mediates mass transfer between the mass donor and the white dwarf accretor. We begin with an outline of the topics to be discussed.
Definitions: CVs are here defined as close binary systems in which one component is a CO or ONe white dwarf and the other is a Roche-lobe-filling (or nearly Roche-lobe-filling) star which can be a main-sequence star, a small hydrogen-rich white dwarf, a red giant (Algol-like CV) or a helium white dwarf or helium main sequence star (helium CV). In symbiotic stars, the companion of the white dwarf is a red giant or Asymptotic Giant Branch (AGB) star which, in general, does not fill its Roche lobe.
The influence of full-filled polymer molding on high-frequency circuits in cellular phones is evaluated using computer simulations and high-frequency measurements. Polymer-molded high-frequency circuits of cellular phones increase radiation harmonics and line and antenna phase errors. High-frequency properties are degraded due to a decrease in line impedance and an increase in stray capacitance of land electrodes that are used in the assembly of components. Degradation problems caused by full-filled polymer molding can be alleviated by appropriate circuit design, such as by adjusting the distance of components and creating more effective electromagnetic shielding. Better circuit design must satisfy the specifications of several different types of cellular phones, including global systems mobile telecommunications and digital cellular systems.
A nanometer-scale ZnO light emission array device was fabricated using the multi-level metallization technique of the CMOS process. Square arrays of pits with an inverted pyramid shape made from {111}Si planes were formed on a (100)Si substrate using selective etching. ZnO was deposited on the substrate by chemical vapor deposition (CVD), and the surface of the deposited ZnO film was carefully polished by chemical mechanical planarization (CMP). As a result, ZnO-filled nanometer-scale arrays were obtained after removing the ZnO layer except for the ZnO in the pits by CMP. Cathodoluminescence (CL) from the ZnO arrays was observed.
In most of globular clusters, surface abundance anomalies are observed not only from red giant stars but also from main sequence stars. We discuss the possibility that the latter anomalies can be explained in terms the pollution due to mass transfer during close encounters with red giants, the latter of which have already developed the anomalies through their internal processes. If this is the case, the main sequence stars with the abundance anomalies may serve as a probe into the star-star interactions in dense cores of globular clusters.
a-/b-axis-oriented epitaxial bismuth layer-structured ferroelectric thin films were epitaxially grown on (101)-oriented oxide with rutile structure. The long-range lattice matching between the ferroelectric layer and the bottom rutile layer, particularly the number of rutile units facing one ferroelectric unit and the surface orientation, were discussed for (100)(010)Bi4Ti3O12//(101)TiO2 structure. Cross sectional transmission electron microscope analysis suggests that seven rutile units lie under one a-/b-axis-oriented Bi4Ti3O12 unit with lower misfit dislocation density comparing to eight rutile units by one Bi4Ti3O12 model. Based on this result, the surface orientation at the interface was simulated to give us an appropriate ion alignment model. The titanium layer in the (101)TiO2 structure is most likely to match with the oxygen layer in the a-/b-axis-oriented Bi4Ti3O12 film.
Epitaxial (001)-, (116)- and pseudo (103)-oriented Sr0.35Bi2.2Ta2O9 (SBT (0.35/2.2/2.0)) films were successfully grown on (001), (110) and (111) SrTiO3 substrates, respectively. High-resolution X-ray diffraction reciprocal space mapping (HRXRD-RSM) measurements and pole figure measurements clearly indicated that the (116)-oriented SBT (0.35/2.2/2.0) film consisted of two growth domains those c-axis are separated 180° apart in in-plane and pseudo (103)-oriented SBT film consisted of three growth domains those c-axis are separated 120° apart in in-plane. Moreover, lattice parameter measurements indicated that SBT films grew in fully relaxed state.
IRAS observations of supernova remnants (SNRs) reported that infrared luminosity from SNRs are very different, though some of them have same temperature. This is because infrared emittion depends on density of the dust grains.
We studied a lattice distortion and relaxation of BaTiO3(BT) thin films grown on SrTiO3 (001) substrates(ST) by a molecular beam epitaxy method using an oxygen radical source RT were prepared by alternately deposition of BaO and TiO2 layers, and the structure of the thin films was evaluated by X-ray diffraction, reflection high energy electron diffraction, transmission electron microscopy, atomic force microscopy, coaxial impact collision ion scattering spectroscopy and X-ray photoelectron spectroscopy The lattice constants of the films varied with distance from the interface of BT and ST It was found that lattice distortion and relaxation of BT On the other hand, the surface analysis indicated that adsorbed oxygen was enriched on the BaO-terminated surface in comparison with the TiO2-terminated surface Then we proposed new mechanism of BT thin film growth with adsorbed oxygen.
Thermal stabilities of hydrogen and helium shell-burnings on accreting neutron stars are studied semi-analytically, the progress of nuclear reactions during the flash is followed numerically, and the mechanism which makes different modes of Type-I X-ray bursts is discussed.
When the massive component in a close binary system evolves to fill its Roche lobe, mass transfer occurs and gas is accreted onto the companion star. Recently, the response of the unevolved secondary to accretion has been studied by a number of authors, but the emphasis has been on relatively massive stars which have a radiative envelope (Ulrich and Burger 1976; Flannery and Ulrich 1977; Kippenhalm and Meyer-Hofmeister 1977; Neo et al. 1977). The results show that the mass accepting star becomes overluminous and grows in radius until rapid mass transfer ultimately brings the two stars into contact. Such changes in the structure are caused by the steep increase in the specific entropy in the outermost layers and only a small amount of mass (about a tenth of the initial mass of the star) is accreted before contact is made. Thereafter, the expansion of the common envelope will lead to mass loss from the system. It is also found that, for a given accretion rate, the radial increase is much more conspicuous for a smaller mass star.
Recent observations have revealed the existence of infrared brightening in some nova explosions, and its absence in others. These infrared excesses are ascribed to thermal emission from grains which are considered to consist of graphite. Such nova explosions are widely accepted to be triggered by hydrogen shell-flashes on the surface of white dwarfs which accrete matter in close binary systems. As for the hydrogen shell-flash, recently, a general theory applicable even to the case of finite amplitude has been developed. According to this theory, the progress of a shell-flash is determined only by the mass of the white dwarf MWD and the mass of the accreted hydrogen-rich envelope ΔMH.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.