We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bioprospecting is the search for valuable products from natural sources. Given that most species are poorly known, a key question is where to search. Ethnodirected bioprospecting approaches use traditional knowledge in the process of selecting plants to screen for desired properties. A complementary approach is to utilize phylogenetic analyses based on traditional uses or known chemistry to identify lineages in which desired properties are most likely to be found. Novel discoveries of plant bioactivity from these approaches can aid the development of treatments for diseases with unmet medical needs. For example, neurological disorders are a growing concern, and psychoactive plants used in traditional medicine may provide botanical sources for bioactivity relevant for treating diseases related to the brain and nervous system. However, no systematic study has explored the diversity and phylogenetic distribution of psychoactive plants. We compiled a database of 501 psychoactive plant species and their properties from published sources. We mapped these plant attributes on a phylogenetic tree of all land plant genera and showed that psychoactive properties are not randomly distributed on the phylogeny of land plants; instead certain plant lineages show overabundance of psychoactive properties. Furthermore, employing a ‘hot nodes’ approach to identify these lineages, we can narrow down our search for novel psychoactive plants to 8.5% of all plant genera for psychoactivity in general and 1–4% for specific categories of psychoactivity investigated. Our results showcase the potential of using a phylogenetic approach to bioprospect plants for psychoactivity and can serve as foundation for future investigations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.