We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The target article offers a negative, eliminativist thesis, dissolving the specialness of mirroring processes into a solution of associative mechanisms. We support the authors' project enthusiastically. What they are currently missing, we argue, is a positive, generative thesis about associative learning mechanisms and how they might give way to the complex, multimodal coordination that naturally arises in social interaction.
The words people use and the way they use them can reveal a great deal about their mental states when they attempt to deceive. The challenge for researchers is how to reliably distinguish the linguistic features that characterize these hidden states. In this study, we use a natural language processing tool called Coh-Metrix to evaluate deceptive and truthful conversations that occur within a context of computer-mediated communication. Coh-Metrix is unique in that it tracks linguistic features based on cognitive and social factors that are hypothesized to influence deception. The results from Coh-Metrix are compared to linguistic features reported in previous independent research, which used a natural language processing tool called Linguistic Inquiry and Word Count. The comparison reveals converging and contrasting alignment for several linguistic features and establishes new insights on deceptive language and its use in conversation.
Email your librarian or administrator to recommend adding this to your organisation's collection.