We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Incidence and risk factors for recurrent Clostridioides difficile infection (rCDI) are well established in adults, though data are lacking in pediatrics. We aimed to determine incidence of and risk factors for rCDI in pediatrics.
Methods:
This retrospective cohort study of pediatric patients was conducted at 3 tertiary-care hospitals in Canada with laboratory-confirmed CDI between April 1, 2012, and March 31, 2017. rCDI was defined as an episode of CDI occurring 8 weeks or less from diagnostic test date of the primary episode. We used logistic regression to determine and quantify risk factors significantly associated with rCDI.
Results:
In total, 286 patients were included in this study. The incidence proportion for rCDI was 12.9%. Among hospitalized patients, the incidence rate was estimated at 2.6 cases of rCDI per 1,000 hospital days at risk (95% confidence interval [CI], 1.7–3.9). Immunocompromised patients had higher incidence of rCDI (17.5%; P = .03) and higher odds of developing rCDI independently of antibiotic treatment given for the primary episode (odds ratio [OR], 2.31; 95% CI, 1.12–5.09). Treatment with vancomycin monotherapy did not show statistically significant protection from rCDI, independently of immunocompromised status (OR, 0.33; 95% CI, 0.05–1.15]).
Conclusions:
The identification of increased risk of rCDI in immunocompromised pediatric patients warrants further research into alternative therapies, prophylaxis, and prevention strategies to prevent recurrent disease burden within these groups. Treatment of the initial episode with vancomycin did not show statistically significant protection from rCDI.
To describe barriers and facilitators to the adoption of recommended infection prevention and control (IPC) practices among healthcare workers (HCWs).
Methods:
A qualitative research design was used. Individual semistructured interviews with HCWs and observations of clinical practices were conducted from February to May 2018 in 8 care units of 2 large tertiary-care hospitals in Montreal (Québec, Canada).
Results:
We interviewed 13 managers, 4 nurses, 2 physicians, 3 housekeepers, and 2 medical laboratory technologists. We conducted 7 observations by following IPC nurses (n = 3), nurses (n = 2), or patient attendants (n = 2) in their work routines. Barriers to IPC adoption were related to the context of care, workplace environment issues, and communication issues. The main facilitator of the IPC adoption by HCWs was the “development of an IPC culture or safety culture.” The “IPC culture” relied upon leadership support by managers committed to IPC, shared belief in the importance of IPC measures to limit healthcare-associated infections (HAIs), collaboration and good communication among staff, as well as proactivity and ownership of IPC measures (ie, development of local solutions to reduce HAIs and “working together” toward common goals).
Conclusions:
Adoption of recommended IPC measures by HCWs is strongly influenced by the “IPC culture.” The IPC culture was not uniform within hospital and differences in IPC culture were identified between care units.
To perform a post-outbreak prospective study of the Pseudomonas aeruginosa contamination at the faucets (water, aerator and drain) by culture and quantitative polymerase chain reaction (qPCR) and to assess environmental factors influencing occurrence
SETTING
A 450-bed pediatric university hospital in Montreal, Canada
METHODS
Water, aerator swab, and drain swab samples were collected from faucets and analyzed by culture and qPCR for the post-outbreak investigation. Water microbial and physicochemical parameters were measured, and a detailed characterization of the sink environmental and design parameters was performed.
RESULTS
The outbreak genotyping investigation identified drains and aerators as the source of infection. The implementation of corrective measures was effective, but post-outbreak sampling using qPCR revealed 50% positivity for P. aeruginosa remaining in the water compared with 7% by culture. P. aeruginosa was recovered in the water, the aerator, and the drain in 21% of sinks. Drain alignment vs the faucet and water microbial quality were significant factors associated with water positivity, whereas P. aeruginosa load in the water was an average of 2 log higher for faucets with a positive aerator.
CONCLUSIONS
P. aeruginosa contamination in various components of sink environments was still detected several years after the resolution of an outbreak in a pediatric university hospital. Although contamination is often not detectable in water samples by culture, P. aeruginosa is present and can recover its culturability under favorable conditions. The importance of having clear maintenance protocols for water systems, including the drainage components, is highlighted.
Infect. Control Hosp. Epidemiol. 2015;36(11):1283–1291
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.