Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-16T18:39:36.704Z Has data issue: false hasContentIssue false

Turbulent planar wakes of viscoelastic fluids analysed by direct numerical simulations

Published online by Cambridge University Press:  08 August 2022

Mateus C. Guimarães
Affiliation:
IDMEC/LAETA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
Fernando T. Pinho
Affiliation:
CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal ALiCE, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
Carlos B. da Silva*
Affiliation:
IDMEC/LAETA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
*
Email address for correspondence: carlos.silva@tecnico.ulisboa.pt

Abstract

Direct numerical simulations employing the finitely extensible nonlinear elastic constitutive model closed with Peterlin's approximation (FENE-P) are used to investigate the far-field region of turbulent planar wakes of viscoelastic fluids and to develop the theory describing these flows. The theoretical results display excellent agreement with the simulations and provide new scaling laws for the evolution of the shear layer thickness $\delta (x) \sim x^{1/2}$, mean velocity deficit ${\rm \Delta} U(x) \sim x^{-1/2}$ and, for very high Deborah numbers, of the maximum polymer shear stresses $\sigma ^{[p]}_c(x) \sim x^{-2}$ and averaged polymer chain extension $\textrm {tr}(\bar {C}(x) - \boldsymbol{\mathsf{I}}) \sim x^{-2}$, where $x$ is the streamwise distance from the solid body generating the wake. The theory is able to show the existence of self-similarity for the profiles of mean velocity, mean polymer shear stress, averaged polymer chain extension and the conditions for similarity of the turbulent shear stress, and is very well supported by the numerical simulations. Similarly to the case of viscoelastic turbulent planar jets (Guimarães et al., J. Fluid Mech., vol. 899, 2020, p. A11), when the inlet Weissenberg and Deborah numbers are sufficiently large, turbulent viscoelastic wakes exhibit a considerable reduction of the spreading rate and of the normalised Reynolds stresses. However, for very large downstream locations the turbulent viscoelastic wake recovers the classical evolution laws observed for Newtonian turbulent planar wakes.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu, H., Pinho, F.T. & da Silva, C.B. 2022 Turbulent entrainment in viscoelastic fluids. J. Fluid Mech. 934, A26.CrossRefGoogle Scholar
Aronson, D. & Löfdahl, L. 1993 The plane wake of a cylinder: measurements and inferences on turbulence modeling. Phys. Fluids A 5 (6), 14331437.CrossRefGoogle Scholar
Azaiez, J. & Homsy, G.M. 1994 Linear stability of free shear flow of viscoelastic liquids. J. Fluid Mech. 268, 3769.CrossRefGoogle Scholar
Bird, R.B., Dotson, P.J. & Johnson, N.L. 1980 Polymer solution rheology based on a finitely extensible bead-spring chain model. J. Non-Newtonian Fluid Mech. 7, 213235.CrossRefGoogle Scholar
Borisov, A.N., Mironov, B.P., Novikov, B.G. & Fedosenko, V.D. 1990 Wake flows in dilute polymer solutions. In Structure of Turbulence and Drag Reduction (ed. A. Gyr), pp. 249–255. Springer.CrossRefGoogle Scholar
Browne, L.W.B. & Antonia, R.A. 1986 Reynolds shear stress and heat flux measurements in a cylinder wake. Phys. Fluids 29 (3), 709713.CrossRefGoogle Scholar
Cadot, O. & Kumar, S. 2000 Experimental characterization of viscoelastic effects on two-and three-dimensional shear instabilities. J. Fluid Mech. 416, 151172.CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 1987 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Coelho, P.M. & Pinho, F.T. 2003 a Vortex shedding in cylinder flow of shear-thinning fluids: I. Identification and demarcation of flow regimes. J. Non-Newtonian Fluid Mech. 110 (2–3), 143176.CrossRefGoogle Scholar
Coelho, P.M. & Pinho, F.T. 2003 b Vortex shedding in cylinder flow of shear-thinning fluids. II. Flow characteristics. J. Non-Newtonian Fluid Mech. 110 (2–3), 177193.CrossRefGoogle Scholar
Coelho, P.M. & Pinho, F.T. 2004 Vortex shedding in cylinder flow of shear-thinning fluids. III. Pressure measurements. J. Non-Newtonian Fluid Mech. 121 (1), 5568.Google Scholar
Cressman, J.R., Bailey, Q. & Goldburg, W.I. 2001 Modification of a vortex street by a polymer additive. Phys. Fluids 13 (4), 867871.CrossRefGoogle Scholar
Ferreira, P.O., da Silva, C.B. & Pinho, F.T. 2016 Large-eddy simulations of forced isotropic turbulence with viscoelastic fluids described by the FENE-P model. Phys. Fluids 28 (12), 125104.CrossRefGoogle Scholar
Gadd, G.E. 1966 Effects of long-chain molecule additives in water on vortex streets. Nature 211, 169170.CrossRefGoogle Scholar
George, W.K. 2008 Is there an asymptotic effect of initial and upstream conditions on turbulence? In Fluids Engineering Division Summer Meeting, vol. 48418, pp. 647–672.Google Scholar
George, W.K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structure. In Advances in Turbulence (ed. W.K. George & R. Arndt), pp. 39–73. Hemisphere.Google Scholar
Guimarães, M.C., Pimentel, N., Pinho, F.T. & da Silva, C.B. 2020 Direct numerical simulations of turbulent viscoelastic jets. J. Fluid Mech. 899, A11.CrossRefGoogle Scholar
Hickey, J.P., Hussain, F. & Wu, X. 2013 Role of coherent structures in multiple self-similar states of turbulent planar wakes. J. Fluid Mech. 731, 312363.CrossRefGoogle Scholar
Horiuti, K., Matsumoto, K. & Fujiwara, K. 2013 Remarkable drag reduction in non-affine viscoelastic turbulent flows. Phys. Fluids 25, 015106.CrossRefGoogle Scholar
Kato, H. & Mizuno, Y. 1983 An experimental investigation of viscoelastic flow past a circular cylinder. Bull. JSME 26 (214), 529536.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Kim, K., Li, C., Sureshkumar, R., Balachandar, S. & Adrian, R.J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.CrossRefGoogle Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (1), 241282.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.CrossRefGoogle Scholar
Liu, X., Thomas, F.O. & Nelson, R.C. 2002 An experimental investigation of the planar turbulent wake in constant pressure gradient. Phys. Fluids 14 (8), 28172838.CrossRefGoogle Scholar
Lumley, J.L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polym. Sci. 7 (1), 263290.Google Scholar
Metzner, A.B. & Metzner, A.P. 1970 Stress levels in rapid extensional flows of polymeric fluids. Rheol Acta. 9 (2), 174181.CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shar layer. J. Fluid Mech. 23, 521544.CrossRefGoogle Scholar
Monkewitz, P.A. & Huerre, P. 1982 Influence of the velocity ratio on the spatial instability of mixing. Phys. Fluids 25 (7), 11371143.CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_{\tau } = 590$. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Moser, R.D., Rogers, M.M. & Ewing, D.W. 1998 Self-similarity of time-evolving plane wakes. J. Fluid Mech. 367, 255289.CrossRefGoogle Scholar
Narasimha, R. & Prabhu, A. 1972 Equilibrium and relaxation in turbulent wakes. J. Fluid Mech. 54 (1), 117.CrossRefGoogle Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.CrossRefGoogle Scholar
Parvar, S., da Silva, C.B. & Pinho, F.T. 2020 Local similarity solution for steady laminar planar jet flow of viscoelastic fene-p fluids. J. Non-Newtonian Fluid Mech. 279, 104265.CrossRefGoogle Scholar
Perlekar, P., Mitra, D. & Pandit, R. 2010 Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E 82, 66313.CrossRefGoogle ScholarPubMed
Pinho, F.T. & Whitelaw, J.H. 1991 Flow of non-Newtonian fluids over a confined baffle. J. Fluid Mech. 226, 475496.CrossRefGoogle Scholar
Pokryvailo, N.A., Shul'Man, Z.P., Sobolevskii, A.S., Prokopchuk, D.A., Kovalevskaya, N.D., Pashik, G.M., Tovchigrechko, V.V. & Zhdanovich, N.V. 1973 Flow of polymer solutions in wakes of poorly streamlined bodies. J. Engng Phys. 25 (6), 14881492.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pot, P.J. 1979 Measurements in a 2-D wake and in a 2-D wake merging into boundary layer: data report. Tech. Rep. NLR-TR 79063 U. National Aerospace Laboratory.Google Scholar
Ramaprian, B.R. 1984 Study of large-scale mixing in developing wakes behind streamlined bodies. Tech. Rep. CR-173478. NASA.Google Scholar
Richter, D., Iaccarino, G. & Shaqfeh, E.S.G. 2012 Effects of viscoelasticity in the high Reynolds number cylinder wake. J. Fluid Mech. 693, 297318.CrossRefGoogle Scholar
Richter, D., Shaqfeh, E.S.G. & Iaccarino, G. 2011 Floquet stability analysis of viscoelastic flow over a cylinder. J. Non-Newtonian Fluid Mech. 166 (11), 554565.CrossRefGoogle Scholar
Sarpkaya, T., Raineyt, P.G. & Kell, R.E. 1973 Flow of dilute polymer solutions about circular cylinders. J. Fluid Mech. 57 (1), 177208.CrossRefGoogle Scholar
Schenck, T. & Jovanovic, J. 2002 Measurement of the instantaneous velocity gradients in plane and axisymmetric turbulent wake flows. J. Fluids Engng 124 (1), 143153.CrossRefGoogle Scholar
Schlichting, H. 1930 Über das ebene Windschattenproblem. Ing.-Arch. 1 (5), 533571.CrossRefGoogle Scholar
Seyer, F.A. & Metzner, A.B. 1969 Turbulence phenomena in drag reducing systems. AIChE J. 15 (3), 426434.CrossRefGoogle Scholar
da Silva, C.B., Lopes, D.C. & Raman, V. 2015 The effect of subgrid-scale models on the entrainment of a passive scalar in a turbulent planar jet. J. Turbul. 16 (4), 342366.CrossRefGoogle Scholar
da Silva, C.B. & Métais, O. 2002 Vortex control of bifurcating jets: a numerical study. Phys. Fluids 14 (11), 37983819.CrossRefGoogle Scholar
Stanley, S.t & Sarkar, S. 1997 Simulations of spatially developing two-dimensional shear layers and jets. Theor. Comput. Fluid Dyn. 9 (2), 121147.CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A., Djenidi, L. & Zhou, Y. 2016 Complete self-preservation along the axis of a circular cylinder far wake. J. Fluid Mech. 786, 253274.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tirtaatmadja, V. & Sridhar, T. 1993 A filament stretching device for measurement of extensional viscosity. J. Rheol. 37 (6), 10811102.CrossRefGoogle Scholar
Townsend, A.A. 1949 The fully developed wake of a circular cylinder. Aust. J. Chem. 2 (4), 451468.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Uberoi, M.S. & Freymuth, P. 1969 Spectra of turbulence in wakes behind circular cylinders. Phys. Fluids 12 (7), 13591363.CrossRefGoogle Scholar
Vaithianathan, T., Robert, A., Brasseur, J.G. & Collins, L.R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140 (1), 322.CrossRefGoogle Scholar
Valente, P.C., da Silva, C.B. & Pinho, F.T. 2014 The effect of viscoelasticity on the turbulent kinetic cascade. J. Fluid. Mech. 760, 3962.CrossRefGoogle Scholar
Valente, P.C., da Silva, C.B. & Pinho, F.T. 2016 Energy spectra in elasto-inertial turbulence. Phys. Fluids 28, 075108.CrossRefGoogle Scholar
Vonlanthen, R. & Monkewitz, P.A. 2013 Grid turbulence in dilute polymer solutions: peo in water. J. Fluid Mech. 730, 7698.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2010 Coil-stretch transition in an ensemble of polymers in isotropic turbulence. Phys. Rev. E 81 (6), 066301.CrossRefGoogle Scholar
Weygandt, J.H. & Mehta, R.D. 1989 Asymptotic behavior of a flat plate wake. Tech. Rep. JIAA Tr-95. Stanford University.Google Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.CrossRefGoogle Scholar
Williamson, J.H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 4856.CrossRefGoogle Scholar
Wygnanski, I., Champagne, F. & Marasli, B. 1986 On the large-scale structures in two-dimensional, small-deficit, turbulent wakes. J. Fluid Mech. 168, 3171.CrossRefGoogle Scholar
Xiong, Y.L., Bruneau, C.H. & Kellay, H. 2013 A numerical study of two dimensional flows past a bluff body for dilute polymer solutions. J. Non-Newtonian Fluid Mech. 196, 826.CrossRefGoogle Scholar
Yamani, S., Keshavarz, B., Raj, Y., Zaki, T.A., McKinley, G.H. & Bischofberger, I. 2021 Spectral universality of elastoinertial turbulence. Phys. Rev. Lett. 127 (7), 074501.CrossRefGoogle ScholarPubMed
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.CrossRefGoogle Scholar
Zhou, Y. & Antonia, R.A. 1995 Memory effects in a turbulent plane wake. Exp. Fluids 19 (2), 112120.CrossRefGoogle Scholar