Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T13:22:56.829Z Has data issue: false hasContentIssue false

Lane formation in 3D driven pair-ion plasmas: I Parallel External Forcing

Published online by Cambridge University Press:  05 May 2023

Vishal Kumar Prajapati
Affiliation:
Department of Physics, School of Basic Sciences, The Assam Kaziranga University, Jorhat 785006, Assam, India
Swati Baruah*
Affiliation:
Department of Physics, School of Basic Sciences, The Assam Kaziranga University, Jorhat 785006, Assam, India
Rajaraman Ganesh
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India
*
Email address for correspondence: baruah.s1@gmail.com

Abstract

Lane formation dynamics of driven three-dimensional pair-ion plasmas (PIP) is investigated. Extensive Langevin dynamics simulation is performed to study the influence of an external electric field on the behaviour of the PIP system. In our model, one half of the particles are pushed into the field direction by an external force $\boldsymbol {F}_{A}$ while the other half are pulled into the opposite direction by an external force $\boldsymbol {F}_{B}$. We show that if $\boldsymbol {F}_{A}$ and $\boldsymbol {F}_{B}$ are parallel, the system undergoes a non-equilibrium phase transition from a disordered state to a lane formation state parallel to the field direction with increasing field strength. The lanes are formed by the same kind of particles moving collectively with the field. The lane order parameter has been implemented to detect phase transition. Further, we show the lane formation in the presence of a time-varying external electric field. In particular, the effect of parallel forces are investigated. Unlike the previously reported two-dimensional case (Sarma, et al., Phys. Plasmas, vol. 27, 2020, p. 012106; Baruah, et al., J. Plasma Phys., vol. 87, issue 2, 2021, p. 905870202), for the time-varying electric field case, spontaneous formation and the breaking of lanes are not observed for all values of applied frequencies; however, the orderness varies and spontaneous formation and breaking of lanes is observed for values close to a critical frequency $\omega _c$. Further, some aspects of the lane formation dynamics of a PIP system are also studied in the presence of an external magnetic field, which reveals that the presence of an external magnetic field accelerates the lane formation process and introduces a drift of the lanes in a direction perpendicular to both electric and magnetic fields.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baruah, S., Sarma, U. & Ganesh, R. 2021 Effect of external magnetic field on lane formation in driven pair-ion plasmas. J. Plasma Phys. 87 (2), 905870202.CrossRefGoogle Scholar
Du, C.-R., Sütterlin, K.R., Ivlev, A.V., Thomas, H.M. & Morfill, G.E. 2012 Model experiment for studying lane formation in binary complex plasmas. Europhys. Lett.) 99 (4), 45001.CrossRefGoogle Scholar
Dzubiella, J., Hoffmann, G.P. & Löwen, H. 2002 Lane formation in colloidal mixtures driven by an external field. Phys. Rev. E 65, 021402.CrossRefGoogle ScholarPubMed
Hall, T. 2019 Microparticle dynamics in the presence of externally imposed, ordered structures in a magnetized low-temperature plasma. PhD thesis, Auburn University.CrossRefGoogle Scholar
Helbing, D., Farkas, I.J. & Vicsek, T. 2000 Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84, 12401243.CrossRefGoogle Scholar
Helbing, D. & Molnár, P. 1995 Social force model for pedestrian dynamics. Phys. Rev. E 51, 42824286.CrossRefGoogle ScholarPubMed
Ikeda, K. & Kim, K. 2017 Lane formation dynamics of oppositely self-driven binary particles: effects of density and finite system size. J. Phys. Soc. Japan 86 (4), 044004.CrossRefGoogle Scholar
Kogler, F. & Klapp, S.H.L. 2015 Lane formation in a system of dipolar microswimmers. Europhys. Lett. 110 (1), 10004.CrossRefGoogle Scholar
Leunissen, M.E., Christova, C.G., Hynninen, A.-P., Royall, C.P., Campbell, A.I., Imhof, A., Dijkstra, M., van Roij, R. & van Blaaderen, A. 2005 Ionic colloidal crystals of oppositely charged particles. Nature 437 (1476–4687), 235240.CrossRefGoogle ScholarPubMed
Lowen, H. 1992 Structure and Brownian dynamics of the two-dimensional Yukawa fluid. J. Phys.: Condens. Matter 4 (50), 1010510116.Google Scholar
Löwen, H. & Kramposthuber, G. 1993 Optimal effective pair potential for charged colloids. Europhys. Lett. 23 (9), 673678.CrossRefGoogle Scholar
Menati, M., Hall, T., Rasoolian, B., Couëdel, L., Thomas, E. & Konopka, U. 2020 Experimental observation and numerical investigation of imposed pattern formation in magnetized plasmas by a wide wire mesh. Plasma Sources Sci. Technol. 29 (8).CrossRefGoogle Scholar
Oohara, W., Date, D. & Hatakeyama, R. 2005 Electrostatic waves in a paired fullerene-ion plasma. Phys. Rev. Lett. 95, 175003.CrossRefGoogle Scholar
Oohara, W. & Hatakeyama, R. 2003 Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005.CrossRefGoogle ScholarPubMed
Oohara, W. & Hatakeyama, R. 2007 Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14 (5), 055704.CrossRefGoogle Scholar
Prajapati, V.K., Baruah, S. & Ganesh, R. 2023 Lane formation in 3D driven pair-ion plasmas: II Non-parallel External Forcing. J. Plasma Phys. (accepted for publication).Google Scholar
Rees, M.J. 2000 A review of gamma ray bursts. Nucl. Phys. A 663 (1), 42c55c.CrossRefGoogle Scholar
Rex, M. & Löwen, H. 2007 Lane formation in oppositely charged colloids driven by an electric field: chaining and two-dimensional crystallization. Phys. Rev. E 75, 051402.CrossRefGoogle ScholarPubMed
Royall, C.P., Leunissen, M.E., Hynninen, A.-P., Dijkstra, M. & van Blaaderen, A. 2006 Re-entrant melting and freezing in a model system of charged colloids. J. Chem. Phys. 124 (24), 244706.CrossRefGoogle Scholar
Saleem, H. 2007 A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics. Phys. Plasmas 14 (1), 014505.CrossRefGoogle Scholar
Salin, G. & Caillol, J.-M. 2000 Ewald sums for Yukawa potentials. J. Chem. Phys. 113 (23), 1045910463.CrossRefGoogle Scholar
Sarma, U., Baruah, S. & Ganesh, R. 2020 Lane formation in driven pair-ion plasmas. Phys. Plasmas 27, 012106.CrossRefGoogle Scholar
Sütterlin, K.R., Wysocki, A., Ivlev, A.V., Räth, C., Thomas, H.M., Rubin-Zuzic, M., Goedheer, W.J., Fortov, V.E., Lipaev, A.M., Molotkov, V.I., et al. 2009 Dynamics of lane formation in driven binary complex plasmas. Phys. Rev. Lett. 102 (8), 085003.CrossRefGoogle ScholarPubMed
Tarama, S., Egelhaaf, S.U. & Löwen, H. 2019 Traveling band formation in feedback-driven colloids. Phys. Rev. E 100, 022609.CrossRefGoogle ScholarPubMed
Vissers, T., van Blaaderen, A. & Imhof, A. 2011 a Band formation in mixtures of oppositely charged colloids driven by an ac electric field. Phys. Rev. Lett. 106, 228303.CrossRefGoogle ScholarPubMed
Vissers, T., Wysocki, A., Rex, M., Löwen, H., Royall, C.P., Imhof, A. & van Blaaderen, A. 2011 b Lane formation in driven mixtures of oppositely charged colloids. Soft Matt. 7, 23522356.CrossRefGoogle Scholar