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A new wall function method for hypersonic laminar boundary layers (HLBLs) is proposed
to reduce the near-wall grid dependence of skin friction cf and wall heat flux qw
in numerical simulations, aiming for fast and accurate predictions. First, an analytic
laminar velocity law of the wall is derived, which achieves a universal scaling of the
near-wall velocity of HLBLs. Then an accurate temperature–velocity relation is deduced
by introducing the general recovery factor to address the invalidation of the Walz relation
under the cold wall effect. Based on the laminar laws of the wall, a new wall function
method for HLBLs is proposed. To avoid introducing the boundary layer edge quantities,
the laminar laws of the wall are reformed by modifying the outer boundary conditions
of the differential equation in deriving the temperature–velocity relation. Unlike the wall
function method in turbulence, the new wall function obtains directly the accurate cf and
qw by post-processing without being involved in the simulation iteration. The numerical
experiments of a Mach 8 HLBL over the flat plate show that effectively, the new wall
function can enlarge the distance of the first grid point off the wall �y1 from 10−6 m to
10−3 m, which brings a 50 times enhancement of the simulation efficiency. Meanwhile, the
simulation errors of cf and qw of the mesh with �y1 = 10−3 m are reduced significantly
from 24.2 % and 18.5 % to 0.5 % and 0.1 %, respectively. Due to the new wall function
removing the boundary layer edge quantities, success is also achieved under the curved
walls.

Key words: compressible boundary layers, hypersonic flow, computational methods

1. Introduction

The fast and accurate prediction of skin friction cf and wall heat flux qw is a critical
issue in the aerodynamic/aerothermal numerical simulation of hypersonic vehicles. The
velocity and temperature in hypersonic boundary layers vary sharply near the wall, which

† Email address for correspondence: gaozhenxun@buaa.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 981 A9-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:gaozhenxun@buaa.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.60&domain=pdf
https://doi.org/10.1017/jfm.2024.60


F. Mo and Z. Gao

brings great difficulties in predicting cf and qw accurately. Available studies (Hoffmann,
Siddiqui & Chiang 2013; Thivet, Besbes & Knight 2013) have shown that simulation
results for cf and qw are highly sensitive to the distribution of grid points near the wall,
especially the distance of the first grid point off the wall �y1. To calculate accurately
cf and qw of a hypersonic vehicle, �y1 needs to be very small, generally 10−6 m or
even smaller, which brings a huge computational consumption. For three-dimensional
complicated configurations, the numerical integration time step is limited greatly by the
dense mesh, resulting in even unacceptable computational consumption.

For compressible turbulent boundary layers (CTBLs), the effective wall function method
has been developed to relax the restrictions on �y1 in simulating cf and qw (Wilcox 2006),
which uses the laws of the wall to represent the distribution of velocity and temperature,
and obtains cf and qw indirectly, instead of resolving the near-wall region of CTBLs.
Based on the incompressible wall function, Nichols & Nelson (2004) first introduced
the compressible velocity log law (White 1991) and temperature–velocity relation (Walz
1969), then proposed a compressible wall function, which is effective uniformly in the
inner layer of CTBLs and involves a compressibility effect, thus making it possible to
use the wall function method to obtain cf and qw in CTBLs. Subsequently, Gao, Jiang &
Lee (2013) revised the parameters in the laws of the wall used by Nichols according to
theoretical analysis and numerical experiments, and achieved a more accurate coupling
of wall function with computational fluid dynamics (CFD) codes. The simulation results
of Gao et al. (2013) for CTBLs show that the wall function can still predict cf and qw
accurately with �y+

1 < 400, which greatly improves simulation efficiency.
However, the wall function method developed above can be applied only to CTBLs.

When the hypersonic vehicle flies at an altitude of more than 40 km, most of the boundary
layers on the surface of the vehicle are laminar, and the wall function developed for the
CTBLs will no longer be applicable. In fact, the simulation of cf and qw in hypersonic
laminar boundary layers (HLBLs) also requires high-density grids near the wall. If
there is a suitable wall function method for laminar boundary layers, then it can also
effectively improve the simulation efficiency while ensuring accuracy. At present, there
is no relevant research on the wall function method for HLBLs, and even whether the
wall function for HLBLs can be constructed has not been explored. According to the
construction method of the wall function for CTBLs, the analytic forms of the laws of
the wall for HLBLs are required. For the velocity law of the wall, although self-similarity
solutions exist in HLBLs at a flat plate (Anderson 2006), they cannot be used to construct
the wall function due to the non-analytic form. For the temperature–velocity relation,
the modified relation given by Walz based on the Crocco–Busemann relation can also
be used for the compressible laminar boundary layers with a value of recovery factor
different to that of CTBLs. However, it is reported that the Walz relation fails in CTBLs
with cold wall boundary conditions (Duan, Beekman & Martín 2010; Duan & Martín
2011). It can be predicted that when the Walz relation is applied to the HLBLs, it will
also be invalid under the strong cold wall effect. To deal with this issue, Zhang et al.
(2014) proposed the concept of a general recovery factor to introduce the cold wall
effect, and obtained a general relation between the mean velocity and temperature in
CTBLs. However, the turbulent-related quantities (like effective turbulent Prandtl number)
used in the Zhang et al. (2014) derivation cannot be defined in the laminar boundary
layers, indicating that there is no theoretical basis for extending this relation directly to
HLBLs. Therefore, it is necessary to conduct a derivation for HLBLs. In conclusion,
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Case Ma∞ H (km) p∞ (Pa) T∞ (K) Re (m−1) Tw (K) Θ = Tw/Tr

M6Θ0.16 6 50 79.78 270.65 1.19 × 105 300 0.160
M8Θ0.09 8 50 79.78 270.65 1.59 × 105 300 0.093
M10Θ0.06 10 50 79.78 270.65 1.99 × 105 300 0.062

Table 1. Boundary conditions for numerical simulation.

a series of detailed works need to be carried out to develop the wall function method for
HLBLs.

This paper aims to propose a new wall function method for HLBLs, so as to
reduce the near-wall grid dependence of the simulation for cf and qw, and then
achieve fast and accurate prediction. First, the near-wall velocity law of the wall and
the temperature–velocity relation of HLBLs are derived theoretically and verified by
numerical simulation. Then a new wall function method for HLBLs is proposed based
on the laminar laws of the wall, and the numerical applications are carried out based on
the typical HLBL flows. Finally, the accuracy of cf and qw predicted by the new wall
function, as well as the efficiency improvement in numerical simulation, are analysed and
discussed.

2. Laws of the wall for HLBLs

The key to constructing the wall function method is the analytic form of laws of the wall
within the boundary layers, especially the accurate laws near the wall. Therefore, this
section derives theoretically the temperature–velocity relation and the near-wall velocity
law of the wall in HLBLs, and their accuracy is examined by numerical simulations.

2.1. Temperature–velocity relation
For the compressible laminar boundary layers with zero-pressure gradient, Walz (1969)
used to modify the Crocco–Busemann relation by introducing the recovery factor r ≈
Pr0.5 to involve the Pr /= 1 effect of air. This relation is known as the Walz relation,

T = Tw + (Tr − Tw)
u
ue

+ (Te − Tr)

(
u
ue

)2

, (2.1)

where Tr = Te + ru2
e/(2cp), and subscript e means the boundary layer edge. However,

previous research (Duan et al. 2010; Duan & Martín 2011) indicated that the Walz relation
is valid only in CTBLs under adiabatic and quasi-adiabatic walls. In order to investigate
the performance of the Walz relation in HLBLs, numerical simulation will be carried
out next. The Navier–Stokes equations are solved using the finite-difference-based CFD
code ACANS developed by the authors. The reliability of ACANS has been verified by
numerous numerical simulation studies (Mo et al. 2022, 2023). The boundary conditions
for numerical simulation in this paper are shown in table 1, where the wall temperature
ratio Θ is defined as the ratio of the wall temperature to the adiabatic wall temperature, and
Θ < 1 implies a cold wall. In table 1, the notation M6Θ0.16, for example, denotes Ma∞ =
6 and Θ = 0.16, where the subscript ∞ denotes the freestream. The computational
domain is 1 m in the streamwise direction and 0.5 m in the normal direction, with a
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Figure 1. Comparisons of computational results with (a) Walz relation (2.1) and (b) (2.9).

two-dimensional orthogonal structured mesh, and the near-wall grids are encrypted to
�y1 = 10−6 m to achieve grid independence.

Figure 1(a) provides the comparison between computational results and the Walz
relation for the cases M6Θ0.16, M8Θ0.09 and M10Θ0.06. It can be seen that the Walz
relation fails under the severe cold wall effect, and the deviation is more obvious as the
cold wall effect enhances. To overcome this problem, Zhang et al. (2014) proposed a new
mean temperature–velocity relation for CTBLs by introducing the general recovery factor
concept to consider the cold wall effect. However, this relation is derived by assuming the
effective turbulent Prandtl number to be unity, and cannot be extended directly to laminar
boundary layers. Therefore, it is necessary to conduct a derivation for HLBLs. Inspired by
the work of Zhang et al. (2014), this paper similarly introduces the general recovery factor
into HLBLs and assumes

Hg − Hw = Pr qw

τw
u, (2.2)

where Hg = cpT + rgu2/2 is the general recovery enthalpy. However, unlike the derivation
by Zhang et al. (2014), we differentiated (2.2) directly and obtained

rgu + u2

2
drg

du
= cp

(
dT
du

∣∣∣∣
w

− dT
du

)
, (2.3)

which could be rewritten as

T − u
2

(
dT
du

∣∣∣∣
w

+ dT
du

)
= Tw + u3

4cp

drg

du
. (2.4)

Equation (2.4) exhibits a form different to the Zhang et al. (2014) derivation. To simplify
this complex equation, we have investigated the distribution patterns of rg in HLBLs,
where rg is calculated from the CFD results according to (2.2). Figure 2 illustrates
the distributions of rg in boundary layers of M6Θ0.16, M8Θ0.09 and M10Θ0.06, and
the value of the original recovery factor r is employed as a reference. It can be found
that rg keeps constant throughout the boundary layer and smaller than r under all
three conditions. Therefore, based on the conclusion that rg is approximately constant,
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Figure 2. Comparison between rg and r in laminar boundary layers of (a) M6Θ0.16, (b) M8Θ0.09 and
(c) M10Θ0.06.

we assume
drg

du
= 0, (2.5)

thus (2.4) could be simplified to

T − u
2

(
dT
du

∣∣∣∣
w

+ dT
du

)
= Tw. (2.6)

Equation (2.6) is a first-order linear non-homogeneous ordinary differential equation,
which naturally satisfies the wall boundary condition u = 0, T = Tw. Then this differential
equation can be solved under the outer boundary conditions u = ue, T = Te, and the
solution is

T = Tw +
(

ue
dT
du

∣∣∣∣
w

)
u
ue

+
(

Te − Tw − ue
dT
du

∣∣∣∣
w

) (
u
ue

)2

. (2.7)

Taking the derivative of (2.7) with respect to u, and combining with (2.3), we obtain

rg = Tw − Te

u2
e/(2cp)

+ 2 Pr
ue

qw

τw
. (2.8)

This equation yields the formula for calculating the general recovery factor under different
flow conditions, which includes qw and τw in addition to the boundary layer edge quantities
and wall temperature. After that, employing the definition of the general total temperature
Trg = Te + rgu2

e/(2cp), (2.7) can be rewritten as

T = Tw + (Trg − Tw)
u
ue

+ (Te − Trg)

(
u
ue

)2

. (2.9)

It can be found that (2.9) and the Walz relation (2.1) are in similar form, with the difference
that (2.9) introduces rg to involve the Pr /= 1 and cold wall effects simultaneously. For an
adiabatic wall, rg reduces naturally to r, and (2.9) degenerates to the Walz relation.

Figure 1(b) compares (2.9) with computational results for the cases M6Θ0.16,
M8Θ0.09 and M10Θ0.06. It can be found that the temperature–velocity relation predicted
by (2.9) collapses well with CFD results except for the region near the boundary layer edge,
which shows a great improvement over the Walz relation. The above results indicate that
(2.9) proposed in this paper can describe accurately the temperature–velocity relation in
the laminar boundary layers with different compressibility and cold wall effects.
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2.2. Velocity law of the wall
The theoretical basis of the velocity law of the wall in the viscous sublayer of CTBLs is the
constant shear stress assumption (Gatski & Bonnet 2009), which assumes that the mean
viscous shear stress τxy near the wall remains essentially unchanged along the wall-normal
direction, and approximately equal to the wall shear stress τw (where the subscript w
represents the wall surface), i.e. τxy ≈ μ du/dy ≈ τw, where μ is the dynamic viscosity.
Then is there a region with constant shear stress near the wall in HLBLs?

Here, the order-of-magnitude analysis is performed for the zero-pressure gradient
compressible flat-plate laminar boundary layer equations. The dimensionless continuity
equation and the x-direction momentum equation can be expressed as⎧⎪⎪⎨

⎪⎪⎩
∂ρ∗u∗

∂x∗ + ∂ρ∗v∗

∂y∗ = 0,

ρ∗u∗ ∂u∗

∂x∗ + ρ∗v∗ ∂u∗

∂y∗ = 1
Re∞

∂

∂y∗

(
μ∗ ∂u∗

∂y∗

)
,

(2.10)

where superscript ∗ represents a dimensionless quantity, and Re∞ = ρ∞u∞L/μ∞, where
L means the characteristic length of the flat plate. Here, we consider a certain thickness
δ− near the wall, with δ− � δ � L, where δ is the boundary layer thickness. Obviously,
there are u∗ � 1, x∗ = O(1), μ∗ = O(1), y = O(δ−/L) within δ−. Therefore, analysing
the order of magnitude of the continuity equation yields v∗/u∗ = O(δ−/L). Further
analysis of the order of magnitude of the momentum equation shows that the left-hand
side yields O(ρ∗u∗2), and right-hand side yields O(u∗/Re∞(δ−/L)2). Therefore, when a
certain thickness δ− near the wall is small enough that (δ−/L)2 � 1/Re∞, the ratio of the
magnitudes of the left- and right-hand sides of the momentum equation is

ρ∗u∗2

u∗ Re∞
(

δ−

L

)2

< 1 × u∗ Re∞
(

δ−

L

)2

� 1. (2.11)

This indicates that the convective term in the x-direction momentum equation is
sufficiently small compared to the viscous term and can be neglected within δ−. Therefore,
the momentum equation can be simplified to μ du/dy ≈ τw.

The above order of magnitude analysis proves that there is a ‘constant shear stress
layer’ in compressible laminar flat-plate boundary layers near the wall, which has also
been observed in the inner layer of CTBLs (Van Driest 2003; Griffin, Fu & Moin 2021,
2023; Bai, Griffin & Fu 2022) . Next, numerical simulations for HLBLs will be carried
out to verify the above conclusion. Figure 3 shows the distribution of shear stress τxy in the
boundary layers of M6Θ0.16, M8Θ0.09 and M10Θ0.06. It can be seen that for all cases,
τxy remains essentially unchanged within y/δ < 0.1, i.e. τxy ≈ τw. This indicates that there
is indeed a ‘constant shear stress layer’ near the wall of HLBLs.

Here, if we define the general friction velocity uτ = √
τw/ρw, then, according to the

constant shear stress assumption, we obtain

dy∗= μ

μw
du∗ or y∗=

∫ u∗

0

μ

μw
du∗ = U∗, (2.12)

where y∗ = ρwuτ y/μw and u∗ = u/uτ (to distinguish from y+ and u+ used in CTBLs).
This velocity transformation is similar to that in CTBLs (Gatski & Bonnet 2009). Since
the viscosity varies with temperature, the near-wall theoretical solution y∗ = u∗ is obtained
directly as the temperature remains basically constant near the wall (incompressible flows
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Figure 3. Shear stress τxy in boundary layers of M6Θ0.16, M8Θ0.09 and M10Θ0.06.

0 5

10

20

30

40

50
M6Θ0.16-y∗-u∗
M8Θ0.09-y∗-u∗
M10Θ0.06-y∗-u∗
M6Θ0.16-y∗-U∗
M8Θ0.09-y∗-U∗
M10Θ0.06-y∗-U∗
y∗ = u∗

M6Θ0.16-y∗-u∗
M8Θ0.09-y∗-u∗
M10Θ0.06-y∗-u∗

y∗ = u∗

15

10

5

10 15 20 25 30 0 2 4 6 8 10

(b)(a)

y∗y∗

u∗

M6Θ0.16-y∗-uGM
∗

M8Θ0.09-y∗-uGM
∗

M10Θ0.06-y∗-uGM
∗

Figure 4. Distributions of y∗ − u∗, y∗ − U∗ and y∗ − u∗
GM in HLBLs.

or adiabatic wall). However, for a cold wall boundary condition, the temperature changes
sharply near the wall, and the variation of the viscosity should be considered. Here,
the right-hand side of (2.12), which involves the viscosity variation, is denoted as U∗.
The distributions of y∗ − u∗ and y∗ − U∗ in HLBLs are given in figure 4(a), and the
incompressible theoretical solution y∗ = u∗ is employed as a reference. It can be seen
that y∗ − u∗ deviates significantly from y∗ = u∗ due to the cold wall effect, and the
deviation becomes more obvious as the cold wall effect enhances and the Mach number
increases. Here, y∗ − U∗, which involves the cold wall effect, collapses well with y∗ = u∗
in the range y∗ < 20 (y/δ < 0.2), indicating that (2.12) achieves a universal scaling for the
velocity near the wall of the laminar boundary layers under different compressibility and
cold wall effects.

However, it is not possible to use the integral form of (2.12) directly to construct the wall
function. Therefore, the analytic velocity law of the wall will be derived next by using the
new temperature–velocity relation. For air, the viscosity can be approximated by using the
power law μ/μw = (T/Tw)ω. Then the temperature–velocity relation (2.9) is introduced,
and (2.12) can be rewritten as

y∗ =
∫ u∗

0

[
1 + Trg − Tw

Tw

u
ue

+ Te − Trg

Tw

(
u
ue

)2
]ω

du∗. (2.13)

To transform the integral form (2.13) into an analytic one, the above integrand is subjected
to Taylor expansion, assuming that u/ue is small in the near-wall region, and the small
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quantities of second and higher order are ignored. After integration, we obtain

y∗ = u∗
[

1 + ω
Trg − Tw

2Tw

u
ue

+ ω
Te − Trg

3Tw

(
u
ue

)2
]

= u∗
GM. (2.14)

Equation (2.14) is the analytic form of the near-wall velocity law of the wall proposed in
this paper. It can be observed from (2.14) that the terms in the brackets, except for unity,
relate to the cold wall effect. Therefore, the right-hand side of (2.14), which involves the
cold wall effect, is denoted as u∗

GM . Then there is a linear form y∗ = u∗
GM similar to the

incompressible one.
Figure 4(b) shows the distributions of y∗ − u∗

GM in HLBLs, and y∗ = u∗ is employed
as a reference. Comparing figure 4(b) with figure 4(a), it can be observed that y∗ − u∗

GM
still collapses very well with y∗ = u∗ within the range y∗ < 5 (y < 0.05δ), while the error
occurs gradually as y∗ increases (the error is introduced mainly by Taylor expansion), but
the relative error remains less than 7 % in the range y∗ < 10. Therefore, it can be concluded
that (2.14) is valid near the wall.

3. Design and application of wall function method for laminar boundary layers

To design the new wall function method for HLBLs, numerical simulations are first
conducted to analyse the variation pattern of the near-wall velocity and temperature with
the change of �y1. Then the theoretical form of the new wall function and methodology
of coupling with CFD results are designed based on the laws of the wall derived above.
Finally, the new wall function method is applied to the simulation of typical HLBL flows
to assess its effectiveness.

3.1. Analysis of grid dependence of near-wall velocity and temperature
Two numerical cases are designed to analyse the grid dependence of near-wall velocity
and temperature in HLBLs over the flat plate. The dense mesh (�y1 = 10−6) is used for
the benchmark case, while the coarse one (�y1 = 10−3) is employed for the comparative
case. The freestream conditions of M8Θ0.09 in § 2.1 are adopted here, and the case of
dense mesh is noted as DM8Θ0.09, while the other is CM8Θ0.09.

Figure 5 presents the velocity and temperature profiles in the boundary layers of
DM8Θ0.09 and CM8Θ0.09 at the same downstream position. It can be observed that
the velocity and temperature obtained from the coarse mesh almost coincide with the
results from the dense mesh at the corresponding height. However, the coarse mesh cannot
capture accurately the near-wall velocity and temperature gradient due to the insufficient
grid resolution. At x = 0.8 m (position A), the errors of cf and qw are 18.5 % and 24.2 %,
respectively (as shown in figure 6). Therefore, the key to reducing the grid dependence of
cf and qw is to provide a method to calculate the cf and qw independent of Δy1.

3.2. Design of a new wall function method for HLBLs
In the numerical simulation of CTBLs, the velocity and temperature at the first grid off
the wall are deviated significantly from the accurate values when �y1 is enlarged, so the
wall function must be coupled with CFD as a boundary condition to correct the velocity
and temperature at the first grid. However, for HLBLs, the above simulations show that the
velocity and temperature at the first grid off the wall are still accurate after �y1 is enlarged
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Figure 5. Comparisons between DM8Θ0.09 and CM8Θ0.09: (a) velocity profiles; (b) temperature profiles.
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Figure 6. Comparisons of (a) cf and (b) qw between DM8Θ0.09 and CM8Θ0.09.

in a certain range. Therefore, the wall function method for HLBLs does not need to be
involved in the iteration of CFD as a boundary condition, and there is only a requirement
of designing a method to calculate cf and qw independent of �y1, that is, to perform
post-processing after the simulation is completed.

Next, (2.9) and (2.14) are utilized to design post-processing methods for cf and qw
to avoid the near-wall grid dependence. From (2.9) and (2.14), we can find that these
equations contain multiple boundary layer edge quantities (such as ue, Te), which are
difficult to obtain in simulations of practical complicated configurations. Therefore,
the direct use of these equations to derive the wall function will inevitably introduce
the boundary layer edge quantities, which will not facilitate the application of the
wall function. To deal with this issue, a new prescription is proposed next. For the
temperature–velocity relation, if the differential equation (2.6) is solved by supposing new
outer boundary conditions u = ue− , T = Te− , where the subscript e− denotes a reference
point inside the boundary layer instead of the real boundary layer edge, then the following
extended temperature–velocity relation can be obtained:

T = Tw + (Trg − Tw)
u

ue−
+ (Te− − Trg)

(
u

ue−

)2

, (3.1)
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Figure 7. Comparisons between (3.1) and CFD results: (a) M6Θ0.16, (b) M8Θ0.09 and (c) M10Θ0.06.

where Trg is similar to the definition in § 2.1, except that the quantities at the reference
point are used to replace those at the boundary layer edge.

From (3.1), it can be found that the velocity–temperature relation does not have to
relate to the boundary layer edge quantities, but requires only selecting a certain reference
point e− within the boundary layer. Figure 7 compares the temperature–velocity relation
between (3.1) and CFD results in HLBLs of M6Θ0.16, M8Θ0.09 and M10Θ0.06. Here,
(3.1) is calculated by selecting three typical positions within the HLBLs – ue− = 0.1u∞,
ue− = 0.4u∞, and ue− = 0.7u∞ – as reference points, respectively. It can be seen that
(3.1) collapses well with the CFD results, which indicates that it successfully avoids
introducing the boundary layer edge quantities while still ensuring the accuracy of the
results. Moreover, for the velocity law of the wall (2.14), it can be extended further as

y∗ = u∗
[

1 + ω
Trg − Tw

2Tw

u
ue−

+ ω
Te− − Trg

3Tw

(
u

ue−

)2
]

. (3.2)

Next, the laminar wall function is derived based on the extended laws of the wall. For
convenience, the second grid point off the wall is taken as the reference point in the wall
function, since the selection of the reference point is arbitrary in the wall-normal direction
within the HLBLs. After reorganizing (3.1), qw can be written directly as

qw = T1 − Tw + (Tw − T2)(u1/u2)
2

Pr (u2
1/u2 − u1)

cpτw. (3.3)

The union of (3.1) and (3.2) yields immediately

τw = u1μw

�y1

[
1 + ω

Twu2

(
2u1 − 3u2

6

)
T1 − Tw + (Tw − T2)(u1/u2)

2

u1/u2 − 1

− ω
Tw − T2

3Tw

(
u1

u2

)2
]

. (3.4)

Equations (3.3) and (3.4) are the theoretical forms of the laminar wall function proposed
in this paper, and the subscripts 1 and 2 on the right-hand side denote the quantities at
the first and second grid points off the wall, respectively. In this way, the power law could
be used to provide an accurate ω = ln(μ1/μw)/ ln(T1/Tw). Therefore, the laminar wall
function can calculate directly cf and qw based on the values at the wall as well as the
values at the first and second grid points off the wall.
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Figure 8. Comparisons of (a) cf and (b) qw between DM8Θ0.09 and CM8Θ0.09.

3.3. Applications of the new wall function method for HLBLs
Next, this subsection will conduct research on the applications of the laminar wall function
for typical HLBL flows. On the one hand, the effectiveness of the laminar wall function
method will be verified, and on the other hand, the maximum relaxation degree of �y1,
while ensuring the accuracy of the results of the laminar wall function, will be investigated.

3.3.1. Hypersonic flows over the flat plate
The first application of the new wall function method is carried out based on the
CM8Θ0.09 case, which simulates an HLBL over a flat plate. Here, τw and qw are
calculated by the laminar wall function proposed in § 3.2. It can be seen from figure 8
that the CFD results using the laminar wall function collapse well with the exact results,
and the errors of cf and qw at x = 0.8 m (point A) are only 0.1 % and 0.5 %, respectively,
indicating that the new wall function proposed in this paper can reduce effectively the grid
dependence (�y1) of cf and qw.

For computational efficiency, figure 9 compares the residuals of the CM8Θ0.09 and
DM8Θ0.09 cases under the same Courant–Friedrichs–Lewy (CFL) condition, CFL = 0.4.
Eventually, if the residuals drop by eight orders of magnitude is used as the convergence
criterion, then the dense mesh needs to advance 5.5 × 105 steps, while the coarse one
needs only 1.1 × 104 steps, and the efficiency is enhanced by 50 times. Obviously,
the enlargement of �y1 relaxes the local time step, which accelerates the simulation
convergence.

3.3.2. Hypersonic flows over the curved walls
The second application of the new wall function method is carried out based on the HLBL
flows over the curved walls. A schematic diagram of the two-dimensional curved wall
used in the numerical simulation is shown in figure 10. This configuration contains two
parts: the first part is a flat plate with streamwise length L1 = 1 m, while the second part
is a curved wall connected smoothly to the first one with a specific constant curvature
radius 
. This curved wall shapes a circumference angle θ = 10◦, and streamwise length
L2 = 1 m. In this subsubsection, two different types of curved walls will be employed,
with curvature radii 5.76 m and −5.76 m, respectively. Obviously, the HLBLs undergo
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Figure 9. Comparison of residuals between DM8Θ0.09 and CM8Θ0.09.
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Figure 10. A schematic diagram of the two-dimensional curved wall.

compression through the ‘upward’ curved wall with positive 
, while expansion through
the ‘downward’ curved wall with negative 
.

Figure 11 first illustrates the velocity and density contours of Mach 8 hypersonic flows
over the two different types of curved walls. As we can see, beyond the boundary layer, the
flow quantities of the mainstream are changing along the streamwise direction due to the
compression or the expansion caused by the curved walls. In other words, the position
of the boundary layer edge and the corresponding flow quantities will be difficult to
determine. Therefore, it is essential to avoid introducing boundary layer edge quantities
when applying the laminar wall function method to such flows, and the concept of a
‘reference point’ proposed in § 3.2 is precisely to deal with this issue.

However, if the wall function designed in § 3.2 is extended to HLBLs over the curved
walls, then it is important to note that

Uj = V j · ew,τ , (3.5)

which is the local velocity vector V j projected onto the tangential direction of the wall
surface, should be used rather than the local streamwise velocity uj, where j represents the
jth grid over the wall, and ew,τ denotes the unit tangent vector of the wall.

Here, the cases of positive 
 will be studied first. Due to the flow convergence caused
by the ‘upward’ curved wall, the boundary layer thickness in the downstream part is
thinner than the upstream one. Therefore, the coarse mesh with �y1 = 5 × 10−4 m was
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Figure 11. Velocity and density contours of Mach 8 hypersonic flows over the curved walls.

selected, while the dense mesh is consistent with the previous study with �y1 = 10−6 m.
It should be noted that �y1 represents the distance from the wall to the first grid rather
than the difference in the y-coordinate. Figures 12(a,b) show the comparisons of cf and
qw, respectively, between the dense mesh and the coarse mesh. It can be seen that the
simulation results in the upstream part are similar to those in § 3.3.1; however, the cf and
qw predicted by the dense mesh in the downstream part are increased gradually along
the streamwise direction, which is due to the significant thinning of the boundary layer
along the streamwise direction. Although the results of the coarse mesh without using
wall functions also increase along the streamwise direction, the error increases gradually
compared to the dense mesh. Fortunately, the laminar wall function method proposed in
this paper predicts that the results agree well with those for the dense mesh; at x = 1.6 m,
the errors of cf and qw are 1.7 % and 1.9 %, respectively.

Next, the cases of negative 
 have also been investigated. Due to the flow divergence
caused by the ‘downward’ curved wall, the boundary layer thickness in the downstream
part is thicker than in the upstream part. Therefore, �y1 of the coarse and the dense mesh
are consistent with the previous studies. Figures 13(a,b) show the comparisons of cf and
qw, respectively, between the dense mesh and the coarse mesh. It can be seen that the
simulation results in the upstream part are consistent with those in § 3.3.1; however, cf and
qw decrease rapidly in the downstream part, which is due to the significant thickening of
the boundary layer along the streamwise direction. Although the results of the coarse mesh
without using wall functions also decrease along the streamwise direction, the errors of cf
and qw at x = 1.6 m are still 13.1 % and 17.4 %, respectively. However, the laminar wall
function method proposed in this paper still predicts that the results agree well with those
for the dense mesh; at x = 1.6 m, the errors of cf and qw are 1.7 % and 1.9 %, respectively.

The above results indicate that the new wall function method can still effectively reduce
the near-wall grid dependence of the simulation results for HLBL flows over the more
complex curved walls. In fact, the new wall function can provide accurate cf and qw as
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long as the mesh satisfies �y∗
1 < 5. Figure 14 presents the distribution of �y∗

1 along the
streamwise direction, with a blue solid line denoting the coarse mesh of the ‘upward’
curved wall, and a red dashed line representing the coarse mesh of the ‘downward’ curved
wall. As we can see, the maximum value of �y∗

1 appears at x = 0 m in the case of negative

 shape, while at x = 2 m in the case of positive 
 shape, it is worth noting that �y∗

1 of
two cases remains less than 5 throughout the entire simulation domain. From another
perspective, in figure 4(b), the error caused by Taylor expansion in the analytic velocity
law of the wall basically can be ignored as long as �y∗

1 < 5. However, this error increases
gradually and reaches 7 % when �y∗

1 = 10, which will deteriorate the wall function results
directly. Therefore, it can be concluded that the new wall function method can reduce �y1
significantly in the simulation of HLBL flows while keeping �y∗

1 < 5 to acquire precise
results.

4. Conclusions

In this paper, a new wall function method is proposed for hypersonic laminar boundary
layers (HLBLs) to reduce the near-wall grid dependence of cf and qw in numerical
simulations, aiming for fast and accurate predictions. First, the near-wall ‘constant shear
stress layer’ is verified in HLBLs through numerical simulation, and an analytic laminar
velocity law of the wall is derived based on this truth, which achieves a universal scaling
of the near-wall velocity of HLBLs under different compressibility and cold wall effects.
Then a more accurate temperature–velocity relation is derived theoretically by introducing
the general recovery factor concept in compressible turbulent boundary layers (CTBLs) to
address the invalidation of the Walz relation in HLBLs under the cold wall effect.

Based on the above laminar laws of the wall, a new wall function method for HLBLs
is proposed. In order to avoid introducing the boundary layer edge quantities that make
it difficult to apply the wall function in the simulation of complicated configurations,
the extended laminar laws of the wall are derived theoretically by modifying the outer
boundary conditions of the differential equation in deriving the temperature–velocity
relation. Moreover, unlike the wall function method used in CTBLs, the new wall function
obtains directly the accurate cf and qw by simply post-processing without being involved
in the iteration of simulation. The numerical experiments of Mach 8 HLBLs over the flat
plate show that effectively, the new wall function can enlarge the distance �y1 of the
first grid point off the wall from 10−6 m to 10−3 m, and the simulation errors of cf and
qw of the mesh with �y1 = 10−3 m are reduced significantly, from 24.2 % and 18.5 % to
0.5 % and 0.1 %, respectively. This relaxes the restrictions on the integration time step,
and a 50 times enhancement of the simulation efficiency is achieved. Due to the new
wall function removing the boundary layer edge quantities, success is also achieved under
the curved walls. Additionally, further analysis indicates that it is necessary to keep the
non-dimensional �y∗

1 < 5 in the simulation of HLBL flows to ensure the precision of the
new wall function.
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