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    Abstract
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 We present direct numerical simulations of breaking solitary waves in shallow water to quantify the energy dissipation during the active breaking time. We find that this dissipation can be predicted by an inertial model based on Taylor’s hypothesis as a function of the local wave height, depth and the beach slope. We obtain a relationship that gives the dissipation rate of a breaking wave on a shallow slope as a function of local breaking parameters. Next, we use empirical relations to relate the local wave parameters to the offshore conditions. This enables the energy dissipation to be predicted in terms of the initial conditions. We obtain good collapse of the numerical data with respect to the theoretical scaling.
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 Mostert and Dieke supplementary movie 1
 Video of spilling breaker at α=2^∘,h_0/d_0 =0.15, coloured by vorticity content in the liquid phase, with effective resolution Δx=L_0/2^14. (See main document for definition of nomenclature.)
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 Mostert and Dieke supplementary movie 2
 Video of plunging breaker at α=3^∘,h_0/d_0 =0.3, coloured by vorticity content in the liquid phase, with effective resolution Δx=L_0/2^14. (See main document for definition of nomenclature.)
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 Mostert and Dieke supplementary movie 3
 Video of strong plunging breaker at α=4^∘,h_0/d_0 =0.4, coloured by vorticity content in the liquid phase, with effective resolution Δx=L_0/2^14. (See main document for definition of nomenclature.)
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 Mostert and Dieke supplementary movie 4
 Video of collapsing breaker at α=6^∘,h_0/d_0 =0.5, coloured by vorticity content in the liquid phase, with effective resolution Δx=L_0/2^14. (See main document for definition of nomenclature.)
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 Mostert and Dieke supplementary movie 5
 Video of surging breaker at α=7^∘,h_0/d_0 =0.3, coloured by vorticity content in the liquid phase, with effective resolution Δx=L_0/2^13. (See main document for definition of nomenclature.)
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