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Abstract
This research offers an adaptive model-based methodology for autonomous control of 3-RRR spherical parallel
manipulator (RSPM) based on a novel modeling framework. RSPM is an overconstrained parallel mechanism that
has a variety of applications in medical procedures such as ankle rehabilitation because of its precision and accu-
racy. However, obtaining a complete explicit dynamic model of these mechanisms for tracking purposes has been
a problematic challenge due to their inherent singularities, coupling effects of the limbs, and redundant constraints
imposed by the intermediate joints. This paper presents a novel algorithm to obtain the analytical kinematic solutions
of RSPMs based on the closed-loop vector method, which includes constraint analysis. By incorporating constrained
kinematics into the dynamic model, a comprehensive explicit dynamic solution of the non-overconstrained version
3-RCC of RSPM is developed in task space, based on screw theory and the linear homogeneous property of alge-
braic equations on the manipulator twist. Based on the proposed computational framework, a robust self-tuning
backstepping control (STBC) strategy is applied to the robot to overcome the effect of external disturbances and
time-varying uncertainties. Furthermore, an observer-based compensation (OBC) method is presented for deal-
ing with the nonlinear hysteresis loops of the ankle during trajectory tracking purposes. The closed-loop stability
of the whole system including STBC and OBC is theoretically performed by Lyapunov methods. The proposed
methodologies are validated by realistic co-simulations in different scenarios. For instant, in the presence of external
disturbances, the maximum tracking error norm of STBC is 37.5% less than the sliding mode approach.

1. Introduction
1.1. Ankle rehabilitation devices and matching the ankle joint complex
Parallel robots (PRs) are extensively utilized in robotic rehabilitation, specifically ankle rehabilitation.
Due to their excessive rigidity and high accuracy, PRs are widely used when performing active and
passive ankle rehabilitation exercises. Numerous different parallel robots, including exoskeletons, soft
robots, and platform robots, have been proposed and controlled for ankle rehabilitation therapy. A gen-
eral summary of the latest ankle rehabilitation robots and their properties and structural types has been
presented in ref. [1–3].

The ankle joint complex (AJC) consists of the three primary bones, the tibia, fibula, and talus. The
mobility of AJC can be visualized by three separate rotations, which are illustrated in Fig. 1. The
rotational axes do not precisely coincide from an anatomical perspective [5], which causes residual
translational motions of the foot [6]. Six generalized spherical parallel manipulators (GSPMs) are built
in ref. [7], taking advantage of the module combination configuration synthesis approach and ankle
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Figure 1. Morphological mobilities of ankle-foot complex.
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Figure 2. Rehabilitation device and its adjustment with the ankle joint complex [4].

motion fitting models, in order to accommodate the complexity of the ankle joint. The ankle models
can be fitted correctly by the GSPMs. Despite the fact that the suggested GSPMs offer a useful starting
point for the development and study of ankle rehabilitation robots, the complexity of these GSPMs poses
significant control issues. But as Fig. 2 illustrates, the mechanism in our study considers that the AJC’s
center of rotation can be permanently located [8–10] at the talocrural joint, which is the joint between
the tibia and the talus bone in the ankle [11]. This assumption reduces the mechanism’s complexity and
this can result in a reduction in control difficulty. So, we are able to implement more advanced control
techniques.

1.2. Mathematical modeling challenges and control strategies
The presented mechanism with three degrees of freedom is shown in Fig. 2, which offers the ankle
three rotational degrees of freedom and has an appropriate adaptation to the kinematics of the human
ankle [8]. Although 3-RRR spherical parallel manipulator (RSPM) is an overconstrained mechanism,
non-overconstrained versions of the manipulator, such as 3-RCC, 3-RRS, 3-RUU, 2-RSC-RRR, and
RSC-RRU-RRC [12], can be used for the evaluation of dynamic analysis and control design methods.
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This modification leads to consequences such as different position and orientation accuracies. In this
study, the 3-RCC assembly version of the manipulator is used for applying the proposed methods because
of its highest accuracy [13] in terms of orientation of MP, and we assume that the displacements caused
by manufacturing errors are minor displacements. So far, most studies have focused on the kinematic
issues of RSPMs, while quite a few have referred to the dynamic control of these robots. For RSPMs, sev-
eral studies have been reported on a variety of relevant problems, which include modeling of workspace
in joint and Cartesian space [14–17], inverse and forward kinematic analysis to obtain analytically unique
real-time solutions [18–25], design and optimization [26–32], design and robustness [33], singularity
analysis, and derivation of Jacobian matrices [34, 35]. However, the constrained kinematic analysis has
gone unnoticed in the literature. As will be shown in this paper, the constrained kinematic analysis can
be useful for the extraction of the robot’s closed-form model. Furthermore, the explicit dynamic model
of RSPM is needed for model-based controller design in various control strategies for rehabilitation
exercises [36]. The complexity of RSPM, with its closed-loop structure and kinematic constraints, com-
pels researchers to employ control techniques that are independent of the exact dynamic model of the
robot. However, the problem of dynamic analysis of RSPMs has been addressed in various works using
Newton-Euler, the Lagrange method [37], the recursive matrix method [38], the principle of virtual
work [39, 40], and the D’Alembert principle approach [41]. A Newton-Euler approach based on screw
theory has been proposed to obtain actuator torques and constraint wrenches [42]. In ref. [43], a gen-
eral solution was proposed for the inverse and forward dynamics of parallel robots in joint space using
dynamic models of legs and a moving platform. The dynamic modeling techniques in the literature are
not convenient when designing model-based controllers for RSPMs.

The foundation of these controllers is referred to as the computed torque control (CTC) and passivity-
based control schemes [44]. In the presence of model uncertainties, the CTC approach is unable to
provide high trajectory tracking performance [45]. To solve this issue, various adaptive and robust
control methods have been proposed. A novel robust adaptive approach when sufficient extraction of
the kinematic and dynamic model of the robot is unavailable has been proposed in ref. [46] and is
implemented on an RSPM. This technique provides bounded control input and output signals. Despite
supplying excessive stabilization in the presence of uncertainties and external disturbances, trajectory
tracking functionality has no longer been provided through this method. Li et al. [47] have proposed a
spherical parallel mechanism, which is a special case of RSPMs, with additional sliding actuators and
four moving links. Trajectory tracking control of this manipulator has been performed using a robust
adaptive switching learning algorithm. A promising structure of the adaptive control approach, which
requires many processes, resorts to a linear regression model of the robot through the use of a linearly
parameterized dynamic model of a manipulator [48]. Moreover, time delay controller [49] and time delay
estimation (TDE) [50] techniques can be employed for estimating the unmodeled dynamics and uncer-
tainties through the usage of all state variables and their first and second delayed derivatives. As these
approaches call for information on the acceleration of state variables, they might cause non-negligible
noise in the estimation process [41].

As sufficient system identification for the robot is available, it is more practical and feasible to use
model-based controllers and fuse them with an adaptation law. We have used the backstepping approach
for the known dynamic model, and in order to compensate for model uncertainties, an adaptation law
has been combined with backstepping method using Lyapunov stability analysis.

Regarding the control strategy, it is worth mentioning that controllers can be implemented in joint
[51] or Cartesian [48] space. Cartesian space control is more efficient than joint space control in parallel
robots due to its parallel kinematic chains and complex constraints. Because the position of MP is deter-
mined by the state of the robot and the ankle orientation, Cartesian space control theoretically provides
state feedback control, resulting in better accuracy than joint space control, which is no longer state
feedback control [52]. From the literature, many proposed control approaches for PRs are implemented
in joint space [53], and despite their adequate performance, they can be ameliorated by implementing
them in Cartesian space.
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Figure 3. Applied ankle resistance torque Fr to the robot in Cartesian space.

1.3. Hysteresis loops of the ankle-resistance torques
Since RSPM is used for ankle rehabilitation applications, to achieve high position tracking accuracy
and training safety during passive rehabilitation exercises for patients with increased ankle stiffness
due to a stroke or muscle injury, the ankle-resistance torque (ART) [54] applied to the robot must be
considered in the control design process. ART, which is caused by stiffness in the ankle joint, is depicted
in Fig. 3. The design of passive controllers for ankle rehabilitation robots requires enough knowledge of
the ART dynamic model as well as the robot. It should be considered that ankle stiffness varies across its
range of motion during robotic rehabilitation training and depends on individual characteristics such as
weight, height, gender, age, and type of injury. Therefore, it is important that the robot provides assistive
torque with adjustable compliance. An estimation of passive ankle stiffness is useful to compensate
for ankle resistance in real time. Passive ankle stiffness has been extensively measured and reported in
both healthy and neurologically impaired subjects [54, 55]. In addition, some mechanical computational
ankle models [56] have been developed to assess ART, including muscles with the feature of subject-
specific adjustments [56, 57]. Despite their ability to simulate spasticity, computational models may not
be suitable for control purposes because of their complexity [58].

Although any unknown dynamics from environmental sources could be considered external distur-
bances, if these disturbances are very large, the system may become unstable or its performance may
decline significantly. In this circumstance, one way is to take steps to identify the source of the distur-
bances and reduce their effects by adding additional components to the controller. However, identifying
the exact model for ART is not available, and using a high-gain proportional-derivative (PD) controller
may be proposed in order to compensate for the error between the precise and estimated values of dis-
turbances. As shown in ref. [36], various passive motion control schemes can also be used for stiffness
control of the robot, given the controller parameters. Thus, using only a high-gain controller increases
the stiffness of the robot and the Cartesian wrench applied to the patient’s ankle joint and amplifies the
oscillations and vibrations. These phenoniums can affect the comfort and safety of the patient during
the rehabilitation process.

1.4. Article’s motivation and organization
The main contribution of this paper is the development of a novel computational framework for an
explicit dynamic solution of the 3-RCC spherical parallel mechanism and the design of an adap-
tive robust controller with trajectory tracking capability based on the established dynamic model for
ankle rehabilitation applications. Motivated by the abovementioned points, the following is the paper’s
structure.

In Sect. 2, a complete analytical inverse kinematic model of the robot is derived using the closed-
loop vector method. Then the Jacobian matrices of the robot are extracted. In Sect. 3, based on the
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Figure 4. The overconstrained 3-RRR spherical parallel manipulator.

screw theory, the extraction of the explicit dynamic model of the RSPM in Cartesian space is presented.
In Section 4, a self-tuning backstepping controller (STBC) is designed in task space by providing the
Lyapunov stability analysis. Time-varying uncertainties have been taken into consideration within the
design process. In Sect. 5, a predictive model based on the established robot’s dynamic and a linear pre-
dictive model of ankle stiffness is proposed to compensate for the ART’s dynamic. In Sect. 6, the 3-RCC
version of the manipulator is assembled in a multibody environment, and co-simulations are conducted
in different scenarios on a virtual prototyping simulation to confirm the proposed explicit dynamic solu-
tion and controller. Prior to creating a prototype, the co-simulations can provide a computer-based
benchmark for validating the control algorithm and improving the closed-loop system. As a result, it
offers a more intuitive simulation than the majority of current ones, which rely solely on proposed
algorithms.

2. Architecture and kinematics description
The computer-aided design (CAD) model of the robot is shown in Fig. 4. The moving platform and
the base platform (BP) of the robot are connected to each other by three equally spaced parallel chains.
The chains are denoted as being counterclockwise (e.g., i = 1, 2, 3). Each chain consists of two rigid,
curved links. The robot has three revolute joints in each limb. The joint connecting the first and second
links of each limb is named the passive joint. The first revolute joint of each limb is actuated by a
fixed motor. Unit vectors defined along the axes of the active and passive joints are denoted by ui, wi,
respectively. Moreover, the unit vectors fixed to the MP are denoted by vi, i = 1, 2, 3. These vectors also
intersect at a point called the center of rotation, and the MP has an arbitrary rotation with respect to that
point. The arc angles of the proximal and distal links are indicated by α1 and α2, respectively. Moreover,
γ is the internal angle between the axis perpendicular to BP and the axis of the first revolute joint of the
robot. The right-hand reference coordinate system is chosen such that the origin is at the robot’s center
of rotation. The mentioned kinematic parameters of the robot are shown in Fig. 5. Now, following the
earlier definition of the reference coordinate system, the unit vectors ui, i = 1, 2, 3 are defined as

ui =
[−sin (ηi) sin γ , −cos (ηi) sin γ , cos γ ,

]T
ηi = 2(i − 1)

3
π (1)

The unit vectors of the intermediate joints are obtained in terms of the input joint angles described in
the fixed frame as follows:

wi =
⎡
⎢⎣

−sα1 (cηic�i − cγ sηis�i)− cα1sηisγ

sα1 (c�isηi + cηicγ s�i)− cα1cηisγ

cα1cγ + sα1sγ s�i

⎤
⎥⎦ (2)
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Figure 5. Limbs, vector of active and passive joints, links, kinematic parameters, and reference
coordinate system of RSPM.

where c indicates cos and s indicates sin, and �i, i = 1, 2, 3 define the angular states of the respective
active joints. Moreover, vi only depends on the orientation of MP and is denoted as

vi = Qvi0 (3)

where the rotation matrix Q describes the orientation of the MP with respect to the reference coordi-
nate system. Matrix Q can be chosen using the XYZ-Euler angle conventions [59], and the reference
configuration of vi is chosen such that:

v10 = u3 v20 = u1 v30 = u2

3. Inverse kinematic
3.1. Analytical solution for active joints
For the closed-loop chain of the parallel manipulator, the following constraint equations hold as the loop
closure:

wi.vi = cos α2 (4)

Substituting Eqs. (2) and (3) into Eq. (4), inverse kinematic solutions can be solved analytically by the
following uncoupled nonlinear algebraic equations for active joint angles �i:

AiTi
2 + BiTi + Ti = 0 i = 1, 2, 3 (5)

with

Ti = tan

(
�i

2

)
(6)

In order to obtain unique inverse kinematic solutions, the positive roots of Eq. (6) are considered
due to the accepted initial robot configuration where all three proximal links are rotated in the positive
direction of the actuated joints.

3.2. Analytical solution for passive joints
Let β = [β1, β2, β3 ]T denote the vector of the intermediate joints, and ϕ, θ , and ψ denote the MP
motion variables. To calculate the passive joint angles βi, i = 1, 2, 3, and according to Fig. 6, two coordi-
nate systems are used, the z-axes of which are directed along the intermediate joint axes, but the y-axis
corresponds to the first coordinate system (y1,i) is perpendicular to the plane in which the proximal link
is located, and the y-axis of the second coordinate system (y2,i) is perpendicular to the plane in which
the distal link is located, i.e.,
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Figure 6. Relative degree between proximal and distal links.

y2,i (ϕ, θ ,ψ ,�i)= vi × wi

y1,i (�i)= wi × ui

The dot product of these vectors determines the cosine of the relative angle that proximal and distal links
have to each other. Thus, the closed-loop vector equation for passive joints can be written as follows:

cos βi (ϕ, θ ,ψ ,�i)= y1,i.y2,i∥∥y1,i

∥∥ ∥∥y2,i

∥∥ (7)

Eq. (7) is proposed to represent the constrained kinematics that hold for passive joints. By using
this equation, the inverse kinematic problem of the robot in terms of the passive joint angles can be
analytically obtained.

4. Jacobian matrices of the manipulator
4.1. Jacobian matrix in terms of the active joint rates
Let ω denote the angular velocity vector of the MP, θ = [�1, �2, �3 ]T denote the vector of the actu-
ated joint angles, and x = [ϕ, θ , ψ ]T denote the vector of MP variables. The relationship between
the vector of active joint rate θ̇ and the angular velocity of MP can be written as [33]:

θ̇ = Jaω (8)

where the Jacobian matrix Ja can be expressed as:

Ja = −Jθ
−1Jx (9)

in which,

Jθ = diag(w1 × u1.v1, w2 × u2.v2, w3 × u3.v3),

and

Jx =
⎡
⎣ (w1 × v1)

T

(w2 × v2)
T

(w3 × v3)
T

⎤
⎦

For fully parallel manipulators, Jθ and Jx are both n × n matrices [36] (n = 3 for RSPM). It should be
noted that in order to compute the angular velocity of MP, a rotation matrix E, which is a function of
Euler angles, should be used as follows [59]:

ω = Eẋ (10)

Thus, Eq. (8) can be rewritten as:

θ̇ = Jσ ẋ (11)
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in which the 3 × 3 matrix Jσ is defined as:

Jσ = JaE =
⎡
⎣ Jσ 11 Jσ 12 Jσ 13

Jσ 21 Jσ 22 Jσ 23

Jσ 31 Jσ 32 Jσ 33

⎤
⎦=

⎡
⎣σ1

σ2

σ3

⎤
⎦

3×3

(12a)

As a result, σi is a 1 × 3 vector that is defined as:

σi =
⎛
⎜⎝

Jσ i1

Jσ i2

Jσ i3

⎞
⎟⎠

T

, i = 1, 2, 3 (12b)

4.2. Constrained kinematics
In order to derive a relation that maps the MP motion variable rates to the vector of passive joint
rates β̇, each passive joint angle is considered to be a function of MP Euler angles and active joint
variables, namely,

βi = βi (�i, ϕ,ψ , θ) , i = 1, 2, 3

Therefore, the time derivative of βi can be written as follows:

β̇i = ∇βi (�i, θ ,ψ , ϕ)1×4

⎡
⎢⎢⎢⎣
�̇i

θ̇

ψ̇

ϕ̇

⎤
⎥⎥⎥⎦

4×1

= ∂βi

∂�i

�̇i + ∂βi

∂θ
θ̇ + ∂βi

∂ψ
ψ̇ + ∂βi

∂ϕ
ϕ̇, i = 1, 2, 3 (13)

Writing Eq. 13 three times for each limb and substituting the value of �̇i from Eq. (11) results in the
3 × 3 matrix that relates the passive joint rates and the rates of Euler angles.

β̇ = Jpẋ (14)

where

Jp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂β1

∂�1

Jσ 11 + ∂β1

∂ϕ

∂β1

∂�1

Jσ 12 + ∂β1

∂θ

∂β1

∂�1

Jσ 13 + ∂β1

∂ψ

∂β2

∂�2

Jσ 21 + ∂β2

∂ϕ

∂β2

∂�2

Jσ 22 + ∂β2

∂θ

∂β2

∂�2

Jσ 23 + ∂β2

∂ψ

∂β3

∂�3

Jσ 31 + ∂β3

∂ϕ

∂β3

∂�3

Jσ 32 + ∂β3

∂θ

∂β3

∂�3

Jσ 33 + ∂β3

∂ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

Jρ11 Jρ12 Jρ13

Jρ21 Jρ22 Jρ23

Jρ31 Jρ32 Jρ33

⎤
⎥⎦=

⎡
⎢⎣

ρ1

ρ2

ρ3

⎤
⎥⎦

3×3

(15a)

So, 1 × 3 vector ρi could be written as below:

ρi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂βi

∂�i

Jσ i1 + ∂βi

∂ϕ

∂βi

∂�i

Jσ i2 + ∂βi

∂θ

∂βi

∂�i

Jσ i3 + ∂βi

∂ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, i = 1, 2, 3 (15b)
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5. Explicit dynamics in task space
In this study, the dynamic modeling of the manipulator is derived based on the Newton-Euler formulation
and screw notation [60]. According to this approach, the dynamic model of all moving links of the robot
can be written as follows:

Mṫ + WMt − Gw = Aw + Cw (16)

where

t = [ t1 t2 . . . t7 ]T , lw = [
lw1

lw2 . . . lw7

]T (17)

and

M = diag (M1, . . . , M7) (18)

W = diag (W1, . . . , W7) (19)

in which tj denotes the twist array of the jth moving link. Moreover, lwj, l = A, G, C represents the work-
ing, gravitational, and non-working constraint wrench exerted on body j, where it is assumed that torques
are applied at the center of mass of the body [61], and Mj is the 6 × 6 inertia matrix of body j. Also, Wj

is the 6 × 6 angular velocity matrix of the same body. The foregoing matrices are defined below for the
jth body,

tj =
[

ωj

vj

]
Mj =

[
Ij 03×3

03×3 mj13×3

]
Wj =

[
�j 03×3

03×3 03×3

]
, j = 1, 2, . . . , 7

where ωj indicates the angular velocity and vj denotes the linear velocity of the center of mass of each
link. Also, Ij and �j denote the inertia matrix and the cross-product matrix of ωj, respectively [61].
Moreover, mj denotes the mass of link j. The robot actuator-wrench array Aw can be defined as a function
of actuator torques by a transformation, as shown below [61]:

Aw = ATτ (20)

where AT is the 6n × k actuator-wrench shaping matrix of the robot and τ denotes a k-dimensional array
of actuator torques [62] (n = 7, k = 3 for RSPM and τ = [ τ1 τ2 τ3 ]T). Since no actuator wrench is
applied to bodies number 2, 3, 5, or 7, one has

Aw2 = Aw3 = Aw5 = Aw7 = 06×1 (21)

As each actuator applies a torque on the proximal links about the axis of rotation of the first joint in each
chain of the robot, the actuator-wrench shaping matrix of links 1, 4, and 6 can be defined as:

Aw1 =
[

u1τ1

03×1

]
, Aw4 =

[
u2τ2

03×1

]
, Aw6 =

[
u3τ3

03×1

]
(22)

Hence, by resorting to Eq. (21) and (22), AT is obtained as follows:

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 03×1 03×1

015×1 015×1 015×1

03×1 u2 03×1

09×1 09×1 09×1

03×1 03×1 u3

09×1 09×1 09×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

where AT is a 42 × 3 matrix that transfers the actuator torques to the center of mass of each link. Hence,
by using Eqs. (16) and (20), the equations of motion of the parallel manipulator can be rewritten as
follows:

Mṫ + WMt − Gw = Cw + ATτ (24)
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Figure 7. The vectors connected to proximal and distal links and moving platform.

In the following, the derivation of dynamic equations is considered in explicit form. For this purpose,
the robot’s twist array can be written as a function of the rates of generalized coordinates through a
Jacobian matrix [61], namely,

t = Jẋ (25)

ṫ = J̇ẋ + Jẍ (26)

J is a Jacobian matrix that maps the robot’s independent variables to the twist array of all the robot’s
moving links. In order to derive this Jacobian, the twist array of each moving link should be written as
a function of the main independent coordinate rates. Using Eqs. (10), (11), (12), (14), and (15) and the
vectors shown in Fig. 7, the angular velocity vector of moving links can be written as follows:

ω1 = u1σ1ẋ (27a)

ω2 = u1σ1ẋ + w1ρ1ẋ (27b)

ω3 = Eẋ (27c)

ω4 = u2σ2ẋ (27d)

ω5 = u2σ2ẋ + w2ρ2ẋ (27e)

ω6 = u3σ3ẋ (27f)

ω7 = u3σ3ẋ + w3ρ3ẋ (27g)

Then, using some algebraic manipulations, the linear velocity vector of each moving link can be
written in a suitable form as follows:

v1 = −CPM (c1) .(u1σ1).ẋ (28a)

v2 = −CPM (p1) .(u1σ1).ẋ − CPM (λ1) .
(
u1σ1 + w1ρ1

)
.ẋ (28b)

v3 = −CPM (ϑ) .Eẋ (28c)

v4 = −CPM (c2) .(u2σ2).ẋ (28d)
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v5 = −CPM (p2) . (u2σ2) .ẋ − CPM (λ2) .
(
u2σ2 + w2ρ2

)
.ẋ (28e)

v6 = −CPM(c3).(u3σ3).ẋ (28f)

v7 = −CPM (p3) . (u3σ3) .ẋ − CPM (λ3) .
(
u3σ3 + w3ρ3

)
.ẋ (28g)

in which CPM() indicates the cross-product matrix [61] of a vector. Thus, the Jacobian matrix J can be
driven as follows:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1σ1

−CPM(c1).u1σ1

u1σ1 + w1ρ1

−CPM
(
p1

)
.(u1σ1) − CPM (λ1) .

(
u1σ1 + w1ρ1

)
E

−CPM(ϑ)E
u2σ2

−CPM (c2) .u2σ2

u2σ2 + w2ρ2

−CPM
(
p2

)
. (u2σ2)− CPM (λ2) .

(
u2σ2 + w2ρ2

)
u3σ3

−CPM(c3).u3σ3

u3σ3 + w3ρ3

−CPM
(
p3

)
. (u3σ3)− CPM (λ3) .

(
u3σ3 + w3ρ3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

42×3

(29)

ui and wi are unit vectors of active and passive joints, respectively. Moreover, ci, pi, λi, and ϑ are vectors
shown in Fig. 7 and defined in the reference coordinate system. Moreover, σi and ρi are defined in Eq.
(12b) and Eq. (15b) and i = 1, 2, 3 signifies the number of each limb. According to linear homogeneous
property on the array of manipulator twist, and as the non-working constraint wrench Cw produces no
work on the robot and its only function is to hold the adjacent links together, it can be concluded that the
power generated by this wrench on the twist of the system is zero for any feasible motion of the robot
[61], i.e.,

tT Cw = 0 (30)

By substituting Eq. (25) in Eq. (30), one has the following relation:

ẋTJT Cw = 0

Since ẋ cannot be zero, the following equation is obtained:

JT Cw = 0

By multiplying JT in Eq. (24), the dynamic robot equation takes the following form:

JTMṫ + JTWMt − JT Gw = JT Aw + JT Cw = JT ATτ (31)

Then by multiplying (JTAT)−1 in Eq. (31), the following equation is derived:

τ = (JT AT)−1JTMṫ + (JT AT)−1JTWMt − (
JT AT

)−1
JT Gw (32)

Now, by replacing Eqs. (25) and (26) in Eq. (32), the closed-form dynamic formulation for the
manipulator in the Cartesian space is obtained as follows:

τ = [
(JT AT)−1JTMJ

]
ẍ + [

(
JT AT

)−1
JTWMJ + (

JT AT
)−1

JTMJ̇]ẋ − (
JT AT

)−1
JT Gw (33)
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C

Figure 8. Proposed computational framework for deriving the explicit dynamic solution of RSPM in
task space by using the analytical solutions of inverse kinematic problem.

Here J is the Jacobian matrix, which was given in Eq. (29). Eq. (33) is very convenient for applying
multiple advanced control schemes. For sake of simplicity, Eq. (33) can be written in the following
standard form in task space in the absence of external disturbances:

H(x)ẍ + C(x, ẋ)ẋ + G(x) = τ (34)

in which

H (x)= (JT AT)−1JTMJ (35a)

C (x, ẋ)= (
JT AT

)−1
JTWMJ + (

JT AT
)−1

JTMJ̇ (35b)

G (x)= − (
JT AT

)−1
JT Gw (35c)

In this formulation, H(x), C(x, ẋ), and G(x) signify the mass matrix, the Coriolis and centrifugal
matrices, and the gravity vector, respectively. The algorithm flowchart of the entire method of deriving
the manipulator’s explicit dynamic is depicted in Fig. 8.

6. Self-tuning backstepping controller
To achieve a suitable control performance in the presence of dynamic uncertainties, the control input
can be computed as follows:

τ = Ĥ(x)ar + Ĉ(x, ẋ)ẋ + Ĝ(x) (36)

In which,

ar = ẍd + Kd ėx + Kpex + δa (37)

where Ĥ(x), Ĉ(x, ẋ), and Ĝ(x) denote the estimated values of the inertia matrix, the Coriolis and cen-
trifugal matrix, and the gravity vector of the robot, respectively. Kp and Kd denote the PD controller
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gains. xd is vector of the desired orientation of the MP. It is assumed that xd is a twice continuously dif-
ferentiable signal. Moreover, ex = xd − x is the tracking error vector, and ėx = ẋd − ẋ indicates the first
derivative of the tracking error vector in task space. δa = [ δa1 δa2 δa3 ]T signifies an additional term,
which is designed to compensate for time-varying uncertainties. By defining the error as the difference
between the estimated and the accurate value of the corresponding term as (˜). Hence,

H̃ = Ĥ − H C̃ = Ĉ − C G̃ = Ĝ − G

Similarly, (˜) notation may be applied to the motion variables as:

x̃ = x − xd = −ex
˙̃x = ẋ − ẋd = −ėx

Now substituting Eq. (36) in Eq. (34) and adding and subtracting Har, it yields,

ẍ = ar + η (38)

in which

η = H−1
(

H̃ar + C̃ẋ + G̃
)

(39)

where η signifies model uncertainties. Now rewrite Eq. (37) using the (˜) notion, it yields,

ar = ẍd − Kd
˙̃x − Kpx̃ + δa (40)

Substituting Eq. (40) into Eq. (38) yields,
¨̃x = −Kd

˙̃x − Kpx̃ + δa + η (41)

The closed-loop dynamics outlined in Eq. (41) can be written as a state space form through pure
mathematical manipulation by changing variables,

z1 = x̃

z2 = ˙̃x
which results in the following first-order differential equations (ODEs),

ż1 = z2 (42)

ż2 = −Kdz2 − Kpz1 + δa + η (43)

Consider the system shown in Eqs. (42) and (43). For designing a backstepping controller, the fol-
lowing steps have been followed. In the first step, z2 can be used as control input for the system presented
in Eq. (42). So, z2 is defined as a function of z1 as follows:

z2 = φ (z1)= −Bz1 (44)

As a result, Eq. (42) is rewritten as follows:

ż1 = −Bz1 (45)

where B is a diagonal positive-definite matrix defined by the user,

B =
⎡
⎣B1 0 0

0 B2 0
0 0 B3

⎤
⎦ (46)

By defining a Lyapunov function as Vz1 , it is obvious that the origin of Eq. (45) is asymptotically
stable if V̇z1 ≤ 0. Now, let’s define a new variable as,

z = z2 − φ (z1) (47)

Eq. (45) holds if z converges to zero. For ensuring this convergence, Eq. (42) is written as below by
using Eq. (47) and some manipulations,

ż1 = z −Bz1 (48)
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Then by differentiating Eq. (47), the following equation is obtained:

ż =Bz − Kdz2 − (Kp +B2)z1 + δa + η (49)

By choosing the controller gains B1, B2, B3 such that the matrix B becomes Hurwitz, a symmetric
positive-definite matrix P exists to satisfy the Lyapunov equation for any arbitrary symmetric positive-
definite matrix ϒ as follows:

BTP + PBT = −ϒ (50)

On the other hand, consider the error dynamic of the uncertainty vector as follows:

E = η̂ − η

Ė = ˙̂η − η̇

in which η̂ and η are the estimated and the unknown actual uncertainty vectors, respectively. Now
it is desirable to design a robust backstepping controller with the ability to estimate time-varying
uncertainties η. For this purpose, by choosing Vz1 = 1

2
z1

Tz1, the following Lyapunov function is
proposed:

VC = 1

2
z1

Tz1 + zTPz + 1

2
ETGa

−1E (51)

where Ga is a diagonal positive-definite constant matrix, which is adaptive gain control. The time
derivative of the Lyapunov function VC is obtained as follows:

V̇C = −z1
TBz1 + ż

T
Pz + zTPż + ETGa

−1
( ˙̂η − η̇

)
= −z1

TBz1 + (Bz)T Pz + (−Kdz2 − (
Kp +B2

)
z1 + η + δa

)T
Pz

+ zTPBz + zTP
(−Kdz2 − (

Kp +B2
)

z1 + η + δa

)+ ETGa
−1
( ˙̂η − η̇

)
= 2zTP

(−Kdz2 − (
Kp +B2

)
z1 + η + δa

)+ zT
(BTP + PBT

)
z + ETGa

−1
( ˙̂η − η̇

)
For the sake of simplicity, denote zTP by a vector h,

h = PTz

By using Eq. (50), V̇C can be written as follows:

V̇C = 2zTP( − kdz2 − (kp +B2)z1) + 2hT(η + δa) − zT
ϒz + ETGa

−1
( ˙̂η − η̇

)
(52)

Then, the following control effort δa and the adaptation law are chosen:

δa = −h − η̂

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h
‖h‖ if ‖h‖> ε

h
ε

if ‖h‖ ≤ ε
(53)

and

˙̂η = 2Gah (54)

in which ε is a threshold width on the h variable. If ε is suitably chosen to be larger than the mea-
surement noise amplitude, this approximation significantly reduces the output chattering. Therefore, the
time derivative of the Lyapunov function becomes,

V̇C ≤ −2zTP
(
Kdz2 + (

Kp +B2
)

z1

)− 2hTh − zT
ϒz − ETGa

−1
η̇ (55)
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By choosing Kd and Kp as positive-definite matrices, −2zTP(Kdz2 + (Kp +B2)z1) becomes negative
definite. In the following, the stability analysis is performed under two different assumptions.

Assumption 1: Assuming that the uncertainties are randomly large and change slowly with time, η̇ can
be omitted.

V̇C < 0

Assumption 2: Assuming that the uncertainties are arbitrarily large and quickly change over time. In
this case, the following scenarios can occur:

if ETGa
−1

η̇> 0 ⇒ V̇C < 0

In the worst case, i.e., ETGa
−1

η̇< 0, inequality (55) can be written as follows:

V̇C ≤ −2zTP
(
Kdz2 + (

Kp +B2
)

z1

)− 2hTh − zT
ϒz + �

in which � = −ETGa
−1

η̇> 0. In this case, � may make V̇ positive definite. A circumstance in which
z �= 0, by choosing controller parameters Kp, Kd, andB as large as possible, positive term � can become
negligible and asymptotical stability of the closed-loop system is guaranteed. On the other hand, when
z = 0, by choosing the adaptation gain Ga large enough, the positive term � becomes very small. It
should be noted that larger Ga results in a faster adaptation, but also increases the control effort.

The estimated uncertainty vector can be computed by integrating Eq. (54) as follows:

η̂ = 2Ga

(∫
hdt

)
Therefore, the proposed controller (PC) is written as follows:

τ = Ĥ
(
ẍd + Kdėx + Kpex

)+ Ĥ
(

−PTz − 2Ga

(∫
hdt

)
sign (h)

)
+ Ĉẋ + Ĝ (56)

where

sign (h)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h
‖h‖ if ‖h‖> ε

h
ε

if ‖h‖ ≤ ε

7. Observer-based compensator of the ankle-resistance torques
7.1. The hysteresis loop of the ankle-resistance torque
In a case where the robot is applied to passive ankle rehabilitation, the dynamic model can be written
as follows [60]:

H(x)ẍ + C(x, ẋ)ẋ + G(x) − τr = H(x)ẍ + C(x, ẋ)ẋ + G(x) − Ja
−TF r = τ (57)

where τ denotes the control input, and F r and τr are the ARTs in the task space and joint space, respec-
tively. As shown in ref. [51], the torque-angle curves of the ankle joint behave like a hysteresis loop
(Fig. 9). Thus, by using a linear predictive model (LPM), an estimate of the ART exerted on the robot’s
MP during passive exercises can be written as:

Frl =
{

Krldf θa +Frl0θa > 0

Krlpf θa +Frl0θa < 0
(58)

where Frl is the linear model of Fr. Moreover, Krldf and Krlpf represent the ankle stiffness during dorsi-
flexion and plantarflexion movements, respectively. θa represents the sagittal plane angular displacement
of the ankle, and Frl0 is a bias term giving the resistance torque when the angle of the ankle joint is
zero. By adjusting the Krldf , Krlpf , and Frl0 coefficients [61], it is possible to get a primary estimate of
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Figure 9. Representative torque-angle curves (hysteresis loops).

each patient’s resistance torque. Therefore, when the robot is used for rehabilitation, an estimate of the
required actuator torque to compensate for the ART can be obtained as follows:

τrl = Ja
−T

⎛
⎝Frl

δ

δ

⎞
⎠ (59)

The main challenge of this modeling is its simplicity, and determining the appropriate parameters
(Krdf , Krpf , and Fr0) for each patient can become an erroneous task and make the modeling error non-
negligible. Moreover, even by choosing suitable LPM parameters, there will always be a mismatch due to
the kinematic uncertainties in Ja

−T . To compensate for this problem, it is proposed to exploit an observer
together with one in Eq. 59 as a robustifying term. This observer computes the assistive torque required
to overcome the error between the estimated resistant torque τrl and its actual value τr indicated by τ�,
i.e., τ� = τrl − τr. So, in the next step, estimating unknown bounded torque τ� becomes of interest. The
proposed observer in this research has the ability to estimate τ� and convergence time of the estimation
process can be adjusted by tuning the gain of the observer. This method is a model-based approach
originally proposed in refs. [62, 63] for serial manipulators and based on the robot dynamic model. The
observer is proposed as follows:

ξ� = K

(
Ĥẋ −

∫ t

0

(
τ − Ĉẋ − Ĝ + dĤ

dt
ẋ + ξ�

)
ds

)
(60)

where ξ� is an estimation of the actual resistant torque τ�, and K is the gain of the observer that is
designed to be a positive diagonal matrix, i.e., K = diag(k1, k2, k3)> 0. Vector ξ� can be computed by
using the measured X and Ẋ and the commanded torque control τ.

7.2. Stability analysis of the observer and the proposed controller
Consider the following dynamic equations of the robot in the presence of τ�:

H (x) ẍ + C (x, ẋ) ẋ + G (x)= τ + τ� (61)

The ODEs of the closed-loop system can be written as:

ż1 = z2 (62)

ż2 = −Kdz2 − Kpz1 + δa + η + τ� (63)
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For the convergence analysis, let’s consider the following variable, which denotes the error dynamics
of τ�:

˙̃
ξ = τ̇� − ξ̇� (64)

By substituting τ from Eq. (61) into Eq. (60), the dynamic relation between the resistance torque τ�
and its estimated value ξ� is obtained as follows:

ξ̇� = K
(
τ� − ξ�

)= Kξ̃ (65)

Thus, by taking a suitable value for K, the estimated value ξ� converges to the accurate value τ�.
For the stability analysis of both the observer and controller, the following positive-definite Lyapunov
function is considered:

VT = 1

2
ξ̃

T
ξ̃ + 1

2
z1

Tz1 + zTPz + 1

2
ETGa

−1E (66)

Differentiating Eq. (66) with respect to time yields,

V̇T = ξ̃
T ˙̃
ξ − z1

TBz1 + ż
T
Pz + zTPż + ETGa

−1
( ˙̂η − η̇

)
= ξ̃

T (
τ̇� − ξ̇�

)+ 2zTP
(−Kdz2 − (

Kp +B2
)

z1 + η + δa

)
+ 2zTPτ� + zT(BTP + PBT)z + ETGa

−1
( ˙̂η − η̇

)
(67)

Then by choosing the control law and adaptation rule in Eq. (53) and Eq. (54), respectively, and
substituting Eq. (65) into Eq. (67), V̇T is obtained as

V̇T ≤ ξ̃
T
τ̇� + 2zTPτ� − ξ̃

T
Kξ̃ − 2zTP

(
Kdz2 + (

Kp +B2
)

z1

)− 2hTh − zT
ϒz + � (68)

Assuming that the actual resistance torque τ� varies slowly with time, i.e., τ̇� ≈ 0, and the observer
provides an appropriate estimation of τ�, V̇T can become negative definite by choosing suitable control
parameters. If the τ̇� ≈ 0 condition is not met, the Lyapunov function can become negative definite by
choosing K as large as possible. However, the condition τ̇� ≈ 0 holds as the hysteresis loops of the ARTs
do not change rapidly. As a result, the following robust linear predictive model (RLPM) is proposed to
overcome the ARTs:

τrlpm = ξ� + Ja
−TF rl (69)

8. Results and discussion
Extensive computer co-simulations have been accomplished to study the overall efficiency of the pro-
posed algorithms for passive ankle rehabilitation purposes. For this purpose, simulations have been
done without considering the ARTs in the first step. After ensuring the stability and high performance
of the PC, the robot-human interactions arising from passive rehabilitation exercises have been taken
into account, and the stability and performance of the proposed schemes have been discussed.

8.1. Performance analysis and co-simulation setup
After determining the robot material (aluminum alloy), the physical parameters given in Tables I and II
have been obtained in 3D CAD software. In addition, ci, pi, λi, and ϑ vectors have been determined in
the initial configuration of the robot in the 3D CAD software. An XML file of non-over constrained ver-
sion 3-RCC of RSPM is generated and then imported into a multibody environment. The co-simulation
procedure for the PC and RLPM is shown in Fig. 10. The motion variables of the MP are sent to the
control system by the sensor block in the multibody environment and sent to the controller blocks for
running computer-based simulations. To discover the performances of the proposed schemes, a sequence
of simulations is performed, and the PC is benchmarked by comparing its tracking performance in the
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Table I. Link inertia (gmm2) taken at the center of mass and mass parameters (g) of the RSPM.

parameter Ix Iy Iz Ixy Ixz Iyz mass
Proximal link 4396131.49 6884522.26 2568018.75 −1.36 −2950428.54 0.76 511.31
Distal link 1784927.98 2665077.19 940077.38 −24.83 −999800.07 −30.13 370.98
Moving platform 1634095.77 1634095.77 3161487.11 0 0 0 522.41

Table II. Dimensions of the RSPM.

Parameter Value (degree)
α1 82.92
α2 82.92
γ 60

( , ̇ ) ̇ + ( )

̇ , 

̇ , 

̈

̃ ̇ , ̃

Figure 10. Co-simulation processes for proposed schemes.

presence of model uncertainties, noise measurements with an amplitude of %0.02 peak values of the
original signals, and external disturbances with three different control topologies, namely, a CTC, slid-
ing mode control (SMC), and adaptive sliding mode control using the time delay estimation technique
[47] (SMC + TDE).

8.2. Simulation results and discussion
The performance and robustness of the proposed schemes are explored through the presentation and
discussion of simulation results in this subsection. To do this, a desired trajectory in Cartesian space,
as shown in Fig. 11, should be tracked by the MP in different scenarios. In the first step, the simula-
tion has been performed under ideal conditions, where dynamic uncertainties, measurement noise, and
disturbances are ignored. The controllers are tuned in such a way that they all have the same level of
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Table III. Controller parameter settings.

controller Kp Kd A γ Ga

PC 220I3×3 220I3×3 – – 300I3×3

CTC 225I3×3 225I3×3 – – –
SMC 220I3×3 220I3×3 I3×3 60I3×3 –
TDE + SMC 175I3×3 175I3×3 I3×3 – –

Figure 11. Desired trajectory for plantar/dorsi flexion configurations of MP.

efficiency. The control parameters are given in Table III where γ(z) denotes the estimated upper bound
of the uncertainty vector and should be chosen to satisfy the inequality γ(z) ≥ η̂(z). Moreover, A is a
diagonal matrix, which is chosen as a positive, definite constant matrix and refers to the sliding surface
σ = Az1 + z2 of the SMC method. To study the behavior of the closed-loop system in perturbed condi-
tions where dynamic uncertainties, measurement noise, and external disturbances exist, a co-simulation
is performed to command the RSPM to follow the same trajectory in Fig. 11 with the inertia parameters
offset±30% and the kinematics parameters α1, α2, γ , η1, η2, and η3 offset ± 15% from their real values.
In addition, noise measurement with an amplitude of % 0.01 peaks of the original signals is added to the
control system, taking into account that all measured variables of vector x are contaminated. To guar-
antee the robustness of the controllers, the simulations were carried out in the presence of both lower
and upper bounds of uncertainty. To compare the performance of the controllers, the norms of the error
vectors are shown in Fig. 12, and when compared to other schemes, the PC provides a lower error norm.

For more detail, the errors of Cartesian space states are shown in Figs. 13 and 14 for upper and
lower bound uncertainties, respectively. Moreover, as shown in Figs. 15 and 16, although the tracking
error is not much increased compared to that of the system without noise, the required actuator torques
of the TDE controller to carry out such a maneuver are very oscillatory. This is due to the fact that
the TDE approach requires acceleration of Cartesian variables to accommodate the required tracking
performance, and although the amplitude of noise is small, the signature of noise is apparently seen in
the required actuator torques. In fact, generating such control input is infeasible in practice, and hence,
reaching the tracking performance of the TDE method is a challenging task.

The disturbance suppression ability of controllers was evaluated by applying the disturbances shown
in Fig. 17(a) to the robot in joint space. As the robot interacts with humans, disturbances with quick
dynamic changes are more common and relevant because of human-induced impulses and human move-
ment patterns. As shown in Fig. 17(b), the PC provides less tracking error and is more reliable. In order to
demonstrate the superiority of the proposed algorithm, the performance measurements of all schemes are
tabulated in Table IV. It demonstrates that the proposed method significantly decreases tracking errors
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Figure 12. Time histories of the norm of the tracking errors in the presence of (a) lower and (b) upper
bound uncertainties.

Figure 13. The closed-loop tracking performance of the RSPM for different controllers in the presence
of upper bound uncertainties.

in perturbed conditions, whereas the other controllers guarantee stability and have suitable performance.
Overall, the closed-loop simulations confirm the power and effectiveness of the PC, and this result sug-
gests that the proposed scheme could be applied to a wide range of manipulation tasks. In the next step,
the desired trajectory, shown in Fig. 11, has been used for inversion and eversion movements. Fig. 18
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Figure 14. The closed-loop tracking performance of the RSPM for different controllers in the presence
of lower bound uncertainties.
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Figure 15. Control input time histories (actuator torques) for different controllers during co-simula-
tions in the presence of lower bound uncertainties and noise measurements.
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Figure 16. Control input time histories (actuator torques) for different controllers during co-simula-
tions in the presence of upper bound uncertainties and noise measurements.

Figure 17. (a) Time histories of disturbances applied to the robot; (b) Time histories of the norm of the
tracking errors in the presence of external disturbances.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724000390
Downloaded from https://www.cambridge.org/core. IP address: 18.224.54.36, on 24 May 2024 at 10:31:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724000390
https://www.cambridge.org/core


Robotica 1589

Table IV. Comparative controller performances during trajectory tracking in
different scenarios.

max |ex| |ex|
scenario controller (degree) (degree)

CTC 0.845 0.324
In the presence of upper SMC 0.736 0.304
bound uncertainties SMC + TDE 0.863 0.406

PC 0.558 0.209
CTC 0.445 0.273

In the presence of lower SMC 0.3942 0.228
bound uncertainties SMC + TDE 0.446 0.293

PC 0.371 0.271
CTC 2.166 0.963

In the presence of SMC 1.92 0.862
external disturbances PC 1.261 0.605

Eversion Inversion

Dorsiflexion Plantarflexion 

(a)

(b)

Figure 18. A virtual prototype model (3-RCC spherical parallel manipulator) of ankle exercise under
passive exercise modes: (a) Inversion/eversion; (b) Dorsiflexion/plantarflexion.

shows a visual view of the animation for the RSPM movements enforced by the PC for dorsiflexion,
plantarflexion, and inversion and eversion configurations.

In the following, co-simulations have been performed in four different scenarios. It is assumed that
the robot should generate passive rehabilitation movements in the presence of ART, which is shown in
Fig. 19. For this, it is necessary to overcome the weight and inertia of the ankle as well as the ART.
According to [64], considering that the weight and inertia of the foot are about 1.5% of the human body
weight, it can be considered the parametric uncertainty that has already been taken into account. The
parameters of the linear model in Eq. (58) are chosen in four different cases, and the observer is expected
to estimate the error between the mentioned linear model and the actual resistance torque applied to the
robot in the joint space. Then, to evaluate the performance and necessity of the observer, the tracking
error is compared in the presence and absence of the observer. The selection of parameters in four cases
is shown in Table V, and to better understand the differences between each case, the selected parameters
of the LPM in each case and the actual resistance torque of the ankle are shown in Fig. 19. The gain
of the observer K is selected to be equal to 50. As shown in Fig. 20(a) in the first case, where the
parameters of the LPM are chosen with good accuracy, the tracking error can be neglected, and there
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Table V. Parameters of the linear predictive model of ankle
resistance torque in different scenarios.

Fr0 (N.m) Krdf Krpf

Case1 1.8 0.04 0.36
Case2 6 0.04 0.36
Case3 −2 0.04 0.36
Case4 −2 0.1 0.55

Figure 19. Selection of the range of ankle stiffness parameters and actual resistance torque of the ankle.

Figure 20. Comparison of the norm of the tracking error vector in (a) case 1 and (b) case 2.

are not many differences between the LPM and the RLPM in terms of efficiency and accuracy. Since
the exact selection of the ankle parameters in Eq. (58) is not possible for every patient, in the second
case, the value of Fr0 is changed to six. This change is also made to measure the safety and robustness
of the proposed method against instability. As shown in Fig. 20(b), the LPM stabilizes the closed-loop
system, but the tracking error is not negligible. Obviously, this issue is due to the error of selecting F r0

from its actual value. However, as depicted in Fig. 20(b), the tracking error is reduced significantly by
using RLPM, and according to Fig. 21, despite the measurement noise and parametric uncertainties, the
predictive observer is able to estimate the torque required to overcome the resistance torque in the joint
space.
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Figure 21. Time histories of actual resistance torque τ� and estimated resistance torque ξ� in (a) case
1 and (b) case 2.
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Figure 22. Comparison of the norm of the tracking error vector in cases 3 and 4.

Figure 23. Time histories of actual resistance torque τ� and estimated resistance torque ξ� in (a) case
3 and (b) case 4.

In the third and fourth cases, the robot became unstable in the absence of the predictive observer. As
it is clear from Fig. 22, the tracking error is less than 0.6 degrees by using the RLPM, and according to
Fig. 23, the observer is able to estimate the resistance torque in these scenarios. The control efforts in
all four cases are also shown in Fig. 24. By using the proposed method, the stability and high tracking
efficiency of the closed-loop system can be guaranteed by avoiding the use of high-gain controllers,
which lead to higher control effort, power consumption, and robot stiffness. Moreover, according to
Fig. 19, the proposed method is largely robust to the error between the actual and selected parameters
of the LPM.

9. Conclusion
In this paper, a spherical parallel robot is presented in aggregate with powerful STBC equipped with a
robust linear predictive model for offering trajectory tracking capabilities in the presence of dynamic
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Figure 24. Control efforts in the presence of ankle resistance torque and different selections of joint
ankle stiffness parameters in four cases.

uncertainties, external disturbances, measurement noises, and ART. Considering the ART will become
of interest when passive and assistive ankle rehabilitation exercises ought to be carried out. To attain the
cited goals, the dynamic model of the robot has been extracted and validated using the Newton-Euler
technique and screw theory. The advantage of this method is that, at the same time as being simple, it
could be used for different spherical parallel manipulators with complicated kinematic structures. By
using this dynamic model, advanced controllers such as CTC, SMC, and SMC + TDE are designed in
Cartesian space, and so as to compare with the PC, which is a STBC, co-simulations are performed in
different scenarios. Co-simulation outcomes show that the maximum tracking error norms have been
decreased by 12% and 34%, respectively, with respect to the SMC and PC in comparison to the CTC
in the presence of upper bound dynamic uncertainties. Also, in the presence of external disturbances,
the maximum tracking error norms of the SMC and PC are 12% and 42%, much less than the CTC,
respectively. The suitable robustness of the proposed approach toward uncertainties, measurement noise,
and external disturbances indicates that the parallel robot can be effectively used in situations where
trajectory tracking is a necessity.

The effectiveness of the proposed RLPM has been evaluated through passive rehabilitation exercises.
The results show that, although different choices of ankle joint stiffness result in fast time-varying resis-
tance torque in the joint space, the proposed technique is capable of providing a truthful prediction of the
ART. With the assistance of this technique, not only is system stability guaranteed, but additionally, the
tracking error may be significantly reduced in the presence of the ART. The validations show that RSPM
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can be successfully commercialized for utilization in ankle rehabilitation applications. In future work,
the actuator’s dynamic behavior and passive joint friction will be extracted once a physical prototype is
developed.
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