Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-21T11:06:51.944Z Has data issue: false hasContentIssue false

Evolution of reproductive strategies in coleoid mollusks

Published online by Cambridge University Press:  31 January 2020

Dirk Fuchs
Affiliation:
Bavarian State Collection for Paleontology and Geology, Richard-Wagner-Strasse 10, 80333Munich, Germany. E-mail: drig.fuchs@gmail.com
Vladimir Laptikhovsky
Affiliation:
Fisheries Division, Cefas, LowestoftNR33 0HT, United Kingdom. E-mail: vladimir.laptikhovsky@cefas.co.uk
Svetlana Nikolaeva
Affiliation:
Natural History Museum, LondonSW7 5BD, United Kingdom; Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow117997, Russia; and Kazan Federal University, Kazan420000, Russia. E-mail: s.nikolaeva@nhm.ac.uk
Alexei Ippolitov
Affiliation:
Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow119017, Russia. E-mail: ippolitov.ap@gmail.com, russianjurassic@gmail.com
Mikhail Rogov
Affiliation:
Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow119017, Russia. E-mail: ippolitov.ap@gmail.com, russianjurassic@gmail.com

Abstract

Coleoid cephalopods exhibited two distinct reproductive strategies, resulting in small pelagic and large demersal hatchlings, both in the geologic past and recently. In ectocochleate cephalopods, the hatching event is recorded in shell structures (e.g., nepionic constrictions, ultrastructural shifts, or ornamentation differences). In contrast, well-defined hatching markers do not exist on coleoid shells. Changes in septal spacing may be evidence of hatching (e.g., some extant sepiids), but not in all fossil groups. In the present study, we subdivide the early ontogenetic shells of phragmocone-bearing coleoids (belemnoids, spirulids, and sepiids) into key architectural stages and describe their reference to the hatching event. Belemnoids exhibit three key stages, the second of which is here considered to occur shortly before or after hatching. In spirulids and sepiids, there is only one key stage. In Mesozoic belemnoids, spirulids, and sepiids, hatching accordingly occurred with a total shell length of less than 2 mm, which corresponds to mantle lengths of small planktonic hatchlings. Production of small pelagic hatchlings and thus small eggs was therefore the dominant reproductive strategy within the Coleoidea. The first evidence of enlarged hatchlings appeared during the Maastrichtian in Groenlandibelus. During the Eocene, the large-egg strategy apparently became more widespread, particularly in belosaepiids.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ambrose, R. F. 1981. Observations on the embryonic development and early postembryonic behavior of Octopus bimaculatus (Mollusca: Cephalopoda). The Veliger 24:139146.Google Scholar
Arai, K., and Wani, R.. 2012. Variable growth modes in Late Cretaceous ammonoids: implications for diverse early life histories. Journal of Paleontology 86:258267.CrossRefGoogle Scholar
Arkhipkin, A. I., Laptikhovsky, V. V., and Middleton, D. A. J.. 2000. Adaptations for the cold water spawning in squid of the family Loliginidae: Loligo gahi around the Falkland Islands. Journal of Molluscan Studies 66:551564.CrossRefGoogle Scholar
Arkhipkin, A. I., Weis, R., Mariotti, N., and Shcherbich, Z.. 2015. “Tailed” cephalopods. Journal of Molluscan Studies 81:345355.CrossRefGoogle Scholar
Arkhipkin, A. I., Bizikov, V. A., Doubleday, Z.A., Laptikhovsky, V. V., Lishchenko, F.V., Perales-Raya, C., and Hollyman, P. R.. 2018. Techniques for estimating the age and growth of molluscs. III: cephalopods. Marine Ecology Progress Series. Journal of Shellfish Research 37:783792.CrossRefGoogle Scholar
Bandel, K. 1982. Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1198.CrossRefGoogle Scholar
Bandel, K. 1985. Composition and ontogeny of Dictyoconites (Aulacocerida, Cephalopoda). Paläontologische Zeitschrift 59:223244.CrossRefGoogle Scholar
Bandel, K., and Boletzky, S. v. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. The Veliger 21:313353.Google Scholar
Bandel, K., Engeser, T., and Reitner, J.. 1984. Die Embryonalentwicklung von Hibolithes (Belemnitida, Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie/Abhandlungen 167:275303Google Scholar
Barskov, I. S. 1973. Structure of the protoconch and ontogeny of belemnites (Coleoidea, Cephalopoda). Doklady Akademii Nauk SSSR. 208:439442. [In Russian.]Google Scholar
Boletzky, S. V. 1974. The “larvae” of Cephalopoda: a review. Thalassia Jugoslavica 10:4576.Google Scholar
Boletzky, S. V. 1983. Sepia officinalis. Pp. 3152in Boyle, P. R., ed. Cephalopod life cycles I: species accounts. Academic Press, London.Google Scholar
Boletzky, S. V. 2003. Biology of early life stages in cephalopod molluscs. Advances in Marine Biology 44:143203.CrossRefGoogle Scholar
Bruun, A. F. 1943. The biology of Spirula spirula (L.). Dana-Report 24:149.Google Scholar
Chun, C. 1914. Cephalopoda from the “Michael Sars” North Atlantic deep-sea expedition, 1910. Reports on Sars North Atlantic Deep Sea Expedition 3:128.Google Scholar
Clarke, M. R. 1970. Growth and development of Spirula spirula. Journal of the Marine Biological Association of the United Kingdom 50:5364.CrossRefGoogle Scholar
Clarke, M. R. 1996. The role of cephalopods in the world's oceans: general conclusions and the future. Philosophical Transactions of the Royal Society of London B 351:11051112.Google Scholar
Crowson, R. A. 1981. The biology of the Coleoptera. Academic Press, London.Google Scholar
Davies, G. R. 1997. The Upper Triassic Baldonnel and Pardonet Formations, western Canada sedimentary basin. Bulletin of Canadian Petroleum Geology 45:643674.Google Scholar
De Baets, K., Klug, C., Korn, D., and Landman, N. H.. 2012. Early evolutionary trends in ammonoid embryonic development. Evolution: International Journal of Organic Evolution 66:17881806.CrossRefGoogle ScholarPubMed
De Baets, K., Klug, C., Korn, D., Bartels, C., and Poschmann, M.. 2013. Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, western Germany). Palaeontographica A 299:1113.CrossRefGoogle Scholar
De Baets, K., Landman, N. H., and Tanabe, K.. 2015. Ammonoid embryonic development. Pp. 113205in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology, Vol. 43. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Doguzhaeva, L. A. 2002. Adolescent bactritoid, orthoceroid, ammonoid and coleoid shells from the Upper Carboniferous and Lower Permian of the South Urals. Abhandlungen der Geologischen Bundesanstalt 57:955.Google Scholar
Doguzhaeva, L. A., and Bengtson, S.. 2011. The capsule: an organic skeletal structure in the Late Cretaceous belemnite Gonioteuthis from north-west Germany. Paleontology 54:397415.CrossRefGoogle Scholar
Doguzhaeva, L. A., and Meléndez, G.. 2017. The embryonic conch structure as a supposed imperative factor on the hatchling dispersal and geographical expansion of belemnites: an example of Callovian (Middle Jurassic) pachybelemnopseins from Aragón (NE Spain). Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 283:317334.CrossRefGoogle Scholar
Doguzhaeva, L. A., Mutvei, H., and Weitschat, W.. 2003. The pro-ostracum and primordial rostrum at early ontogeny of Lower Jurassic belemnites from northwestern Germany. Berliner Paläobiologische Abhandlungen 3:7989.Google Scholar
Doguzhaeva, L. A., Mapes, R. H., and Dunca, E.. 2006. A Late Carboniferous adolescent cephalopod from Texas (USA), with a short rostrum and a long body chamber. Acta Universitatis Carolinae—Geologica 49:5568.Google Scholar
Doguzhaeva, L.A., Mapes, R.H., and Mutvei, H.. 2010. Evolutionary patterns of Carboniferous coleoid cephalopods based on their diversity and morphological plasticity. Pp. 171180in Tanabe, K., Shigeta, Y., Sasaki, T., and Hirano, H., eds. Cephalopods—present and past. Tokai University Press, Tokyo.Google Scholar
Doguzhaeva, L. A., Weis, R., Delsate, D., and Mariotti, N.. 2014. Embryonic shell structure of Early–Middle Jurassic belemnites, and its significance for belemnite expansion and diversification in the Jurassic. Lethaia 47:4965.CrossRefGoogle Scholar
Doubleday, Z. A., Prowse, T. A. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W., and Gillanders, B. M.. 2016. Global proliferation of cephalopods. Current Biology 26:R406R407.CrossRefGoogle ScholarPubMed
Doyle, P. 1992. A review of the biogeography of cretaceous belemnites. Palaeogeography, Palaeoclimatology, Palaeoecology 92:207216.CrossRefGoogle Scholar
Drushchits, V. V., Kabanov, G. K., and Nerodenko, V. M.. 1984. Structure of the phragmocone and rostrum in Tauriconites gen. nov. (Coleoidea, Diplobelidae). Paleontological Journal 1:1218.Google Scholar
Fischer, J.-C., and Riou, B.. 2002. Vampyronassa rhodanica nov. gen. nov. sp., vampyromorphe (Cephalopoda, Coleoidea) du Callovien inferieur de la Voulte-sur-Rhone (Ardeche, France). Annales de Paleontologie 88:117.CrossRefGoogle Scholar
Fuchs, D. 2012. The “rostrum” problem in coleoid terminology—an attempt to clarify inconsistencies. Geobios 45:2939.CrossRefGoogle Scholar
Fuchs, D. 2015. Tintenfische. Pp. 229238in Arratia, G., Schultze, H. P., Tischlinger, H., and Viohl, G., eds. Solnhofen. Ein Fenster in die Jurazeit. Pfeil, Munich.Google Scholar
Fuchs, D. 2019. Homology problems in cephalopod morphology: deceptive (dis)similarities between different types of “caecum.” Swiss Journal of Palaeontology 138:4963.CrossRefGoogle Scholar
Fuchs, D., Bracchi, G., and Weis, R.. 2009. New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hakel and Hadjoula (Lebanon). Palaeontology 52:6581.CrossRefGoogle Scholar
Fuchs, D., Keupp, H., Trask, P., and Tanabe, K.. 2012a. Taxonomy, morphology and phylogeny of Late Cretaceous spirulid coleoids (Cephalopoda) from Greenland and Canada. Palaeontology 55:285303.CrossRefGoogle Scholar
Fuchs, D., Keupp, H., and Wiese, F.. 2012b. Protoconch morphology of Conoteuthis (Diplobelida, Coleoidea) and its implications on the presumed origin of the Sepiida. Cretaceous Research 34:200207.CrossRefGoogle Scholar
Fuchs, D., Donovan, D. T., and Keupp, H.. 2013a. Taxonomic revision of “Onychoteuthis” conocauda Quenstedt, 1849 and (Cephalopoda: Coleoidea). Neues Jahrbuch für Geologie und Paläontologies Abhandlungen 270:244255.Google Scholar
Fuchs, D., Iba, Y., Ifrim, Ch, Nishimura, T., Kennedy, J., Keupp, H., Stinnesbeck, W., and Tanabe, K.. 2013b. Longibelus n. gen. a new Cretaceous coleoid genus linking Belemnoidea & early Decabrachia. Palaeontology 56:10811106.Google Scholar
Fuchs, D., Iba, Y., Tischlinger, H., Keupp, H., and Klug, C.. 2016. The locomotion system of fossil Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia 49:433454.CrossRefGoogle Scholar
Hausmann, I. M., and Nützel, A.. 2014. Diversity and palaeoecology of a highly diverse Late Triassic marine biota from the Cassian Formation of north Italy. Lethaia 48:235255.CrossRefGoogle Scholar
Hewitt, R. A., and Jagt, J. W. M.. 1999. Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs. Acta Palaeontologica Polonica 44:305326.Google Scholar
Hoving, H.G.T., Laptikhovsky, V.V., Lipinski, M.R., and Jurgens, E.. 2014. Fecundity oogenesis, and ovulation pattern of southern African Lycoteuthis lorigera (Steenstrup, 1875). Hydrobiologia 725:2332CrossRefGoogle Scholar
Iba, Y., Mutterlose, J., Tanabe, K., Sano, S., Misaki, A., and Kazunobu, T.. 2011. Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous−Paleogene event. Geology 39:483486.CrossRefGoogle Scholar
Iba, Y., Sano, S., and Mutterlose, J.. 2014. The early evolutionary history of belemnites: new data from Japan. PLoS ONE 9:e95632.CrossRefGoogle ScholarPubMed
Ippolitov, A.P., and Desai, B.G. 2019. Dwarf megateuthidid belemnites from the Bathonian of Kachchh (India: Gujarat) and their significance for palaeobiogeography. Journal of Systematic Paleontology 17:613634.CrossRefGoogle Scholar
Jeletzky, J. A. 1966. Comparative morphology, phylogeny and classification of fossil Coleoidea. University of Kansas Paleontological Contributions: Mollusca 7:1162.Google Scholar
Jenny, D., Fuchs, D., Arkhipkin, A. I., Hauff, R. B., and Klug, C.. 2019. Modes of life of Jurassic phragmocone-bearing belemnoid cephalopods, Scientific Reports 9:7944.CrossRefGoogle Scholar
Kabanov, G. K. 1967. The skeleton of belemnitids; its morphology and biological analysis. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 144:1100. [In Russian.]Google Scholar
Košťák, M., and Wiese, F.. 2008. Lower Turonian record of belemnite Praeactinocamax from NW Siberia and its palaeogeographic significance. Acta Palaeontologica Polonica 53:669678.CrossRefGoogle Scholar
Košťák, M., Jagt, J.W.M., Speijer, R.P., Stassen, P., and Steurbaut, E.. 2013. New Paleocene sepiid coleoids (Cephalopoda) from Egypt: evolutionary significance and origin of the sepiid “rostrum.” PLoS ONE 8:e81180. doi: 10.1371/journal.pone.0081180.CrossRefGoogle ScholarPubMed
Landman, N. H., Rye, D. M., and Sheldon, K. L.. 1983. Early ontogeny of Eutrephoceras compared to recent Nautilus and mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiology 9:269279.CrossRefGoogle Scholar
Laptikhovsky, V. V. 1999. Fecundity and spawning in squid of families Enoploteuthidae and Ancystrocheiridae (Cephalopoda: Oegopsida). Scientia Marina 63:17.CrossRefGoogle Scholar
Laptikhovsky, V. V. 2006. The rule of Thorson-Rass: one or two independent phenomena? Russian Journal of Marine Biology 32:201204.CrossRefGoogle Scholar
Laptikhovsky, V. L., Rogov, M. A., Nikolaeva, S. E., and Arkhipkin, A. I.. 2013. Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bulletin of Geosciences 88:8394.Google Scholar
Laptikhovsky, V. V., Nikolaeva, S., and Rogov, M.. 2017. Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa. Biological Reviews 93:270283.CrossRefGoogle ScholarPubMed
Laptikhovsky, V.V., Fock, H., Piatkowski, U., Schwarz, R., and Hoving, H.J.T.. 2019. Reproductive strategies of deep-sea squid (Mastigoteuthidae, Chiroteuthidae, Batoteuthidae and Cranchiidae). Marine Biology. doi: 10.1007/s00227-019-3532-2.CrossRefGoogle Scholar
Larson, N. L. 2010. Fossil coleoids from the Late Cretaceous (Campanian & Maastrichtian) of the Western Interior. Ferrantia 59:78113.Google Scholar
Lukeneder, A., Harzhauser, M., Müllegger, S., and Piller, W. E.. 2008. Stable isotopes (δ18O and δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Marine Biology 154:175182.CrossRefGoogle Scholar
Mapes, R. H. 1979. Carboniferous and Permian Bactritoidea (Cephalopoda) in North America. University of Kansas Paleontological Contributions Article 64:175.Google Scholar
Mapes, R. H., Doguzhaeva, L. A., Mutvei, H., Landman, N. H., and Tanabe, K.. 2010. The oldest known (Lower Carboniferous–Namurian) protoconch of a rostrum-bearing coleoid (Cephalopoda) from Arkansas, USA: phylogenetic and paleobiogeographic implications. Ferrantia 59:114125.Google Scholar
Mariotti, N., and Pignatti, J.. 1990. Further evidence on some problems concerning the structure of belemnites. Pp. 389–399 in Comitato Centenario Raffaele Piccini, ed. II Convegno per la commemorazione di R. Piccini, Pergola, 25–29 October 1987.Google Scholar
Meyer, J. C. 1993. Un nouveau Coléoide Sépioide, Ceratisepia elongata nov. gen., nov. sp. du Paléogène infèrieur (Danien) de Vigny. Implications taxonomiques et phylogénétiques. Geobios 15:287304.CrossRefGoogle Scholar
Nesis, K. N. 2003. Distribution of recent Cephalopoda and implications for Plio-Pleistocene events. Berliner Paläobiologische Abhandlungen 3:199224.Google Scholar
Nigmatullin, C. M., and Arkhipkin, A. I.. 1998. A review of the biology of the diamondback squid, Thysanoteuthis rhombus (Oegopsida: Thysanoteuthidae). Pp. 155181in Okutani, T., ed. Contributed papers to international symposium on large pelagic squids. Japan Marine Fishery Resources Research Center, Tokyo.Google Scholar
Nigmatullin, C. M., and Laptikhovsky, V. V.. 1994. Reproductive strategies in the squid of the family Ommastrephidae (preliminary report). Ruthenica 4:7982.Google Scholar
Nützel, A., and Kaim, A.. 2014. Diversity, palaeoecology and systematics of a marine fossil assemblage from the Late Triassic Cassian Formation at Settsass Scharte, N Italy. Paläontologische Zeitschrift 88:405431.CrossRefGoogle Scholar
Olofsson, H., Ripa, J., and Jonzén, N.. 2009. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proceedings of the Royal Society of London B 276:29632969.CrossRefGoogle Scholar
Packard, A. 1972. Cephalopods and fish: the limits of convergence. Biological Reviews of Cambridge Philosophical Society 47:241307.CrossRefGoogle Scholar
Pickford, G. E. 1949. The Octopus bimaculatus problem: a study in sibling species. Bulletin Bingham Oceanography Collection 12:166.Google Scholar
Pugaczewska, H. 1961. Belemnoids from the Jurassic of Poland (Belemnity z jury Polski). Acta Palaeontologica Polonica 6:105236.Google Scholar
Sakai, M., Bruneiti, N. E., Elena, B., and Sakurai, Y.. 1998. Embryonic development and hatchlings of Illex argentinus derived from artificial fertilization. South African Journal of Marine Science 20:255265.CrossRefGoogle Scholar
Seibel, B. A. 2007. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). The Journal of Experimental Biology 210:111.CrossRefGoogle Scholar
Strugnell, J. M., Hall, N. E., Vecchione, M., Fuchs, D., and Allcock, A. L.. 2017. Whole mitochondrial genome of the Ram's Horn Squid shines light on the phylogenetic position of the monotypic order Spirulida (Haeckel, 1896). Molecular Phylogenetics and Evolution 109:296301.CrossRefGoogle Scholar
Stubbs, T. L., and Benton, M. J.. 2016. Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology 42:547573.CrossRefGoogle Scholar
Tajika, A., Nützel, A., and Klug, C.. 2018. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6:e4219.CrossRefGoogle ScholarPubMed
Tanabe, K., Trask, P., Ross, R., and Hikida, Y.. 2008. Late Cretaceous octobrachiate coleoid lower jaws from the North Pacific regions. Journal of Paleontology 82:429439.CrossRefGoogle Scholar
Tanner, A. R, Fuchs, D., Winkelmann, I. E., Gilbert, M. T., Pankey, M. S., Ribeiro, Â. M., Kocot, K. M., Halanych, K. M., Oakley, T. H., da Fonseca, R. R., Pisani, D., and Vinther, J.. 2017. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proceedings of the Royal Society of London B 284:20162818. doi: 10.1098/rspb.2016.2818.CrossRefGoogle ScholarPubMed
Turek, V., and Manda, Š.. 2016. Early ontogeny, anomalous growth, and healed injuries in the Silurian nautiloid Ophioceras Barrande—implications for hatching and the autecology of the Tarphycerida. Bulletin of Geosciences 91:331366.CrossRefGoogle Scholar
Villanueva, R., Vidal, E. A. G., Fernández-álvarez, F. A., and Nabhitabhata, J.. 2016. Early mode of life and hatchling size in cephalopod molluscs: influence on the species distributional ranges. PLoS ONE 11:e0165334. doi: 10.1371/journal.pone.0165334.CrossRefGoogle ScholarPubMed
Wani, R., and Mapes, R. H.. 2010. Conservative evolution in nautiloid shell morphology: evidence from the Pennsylvanian nautiloid Metacoceras mcchesneyi from Ohio, USA. Journal of Paleontology 84:477492.CrossRefGoogle Scholar
Wani, R., Tajika, A., Ikuno, K., and Iwasaki, T.. 2018. Ontogenetic trajectories of septal spacing in Early Jurassic belemnites from Germany and France, and their palaeobiological implications. Palaeontology 61:7788.CrossRefGoogle Scholar
Ward, P. D., and Bandel, K. 1987. Life history strategies in fossil cephalopods. Pp. 329352in Boyle, P. R., ed. Cephalopod life cycles II: comparative reviews. Academic Press, London.Google Scholar
Warnke, K., Oppelt, A., and Hoffmann, R.. 2010. Stable isotopes during ontogeny of Spirula and derived hatching temperatures. Ferrantia 59:191201.Google Scholar
Weis, R., Dzyuba, O. S., Mariotti, N., and Chesnier, M.. 2015. Lissajousibelus nov. gen., an Early Jurassic canaliculate belemnite from Normandy, France. Swiss Journal of Palaeontology 134:289300.CrossRefGoogle Scholar
Westermann, G. E. G. 1973. Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6:383403.CrossRefGoogle Scholar
Yamaguchi, A., Kumada, Y., Alfaro, A. C., and Wani, R.. 2015. Abrupt changes in distance between succeeding septa at the hatching time in modern coleoids Sepiella japonica and Spirula spirula. Swiss Journal of Palaeontology 134:301307.CrossRefGoogle Scholar
Yancey, T. E., Garvie, T. L., and Wicksten, M.. 2010. The Middle Eocene Belosaepia ungula (Cephalopoda: Coleoida) from Texas: structure, ontogeny and function. Journal of Paleontology 84:267287.CrossRefGoogle Scholar
Young, R.E., Vecchione, M., and Donovan, D. T.. 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 20:393420.CrossRefGoogle Scholar