Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:01:18.129Z Has data issue: false hasContentIssue false

A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys

Published online by Cambridge University Press:  26 June 2018

Yong Guo
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Liang Liu*
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Yue Zhang
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Jingang Qi
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Bing Wang
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Zuofu Zhao
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Jian Shang
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
Jun Xiang
Affiliation:
Department of Materials Science and Engineering, Liaoning University of Technology, Jinzhou Liaoning 121001, China
*
a)Address all correspondence to this author. e-mail: liuliang@lnut.edu.cn
Get access

Abstract

A series of CoCrFeNiMox (x = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2) high-entropy alloys were designed to develop a eutectic high-entropy alloy system and to acquire a superfine eutectic structure. The results show that for the CoCrFeNiMox alloys, with the increase of Mo content from 0.2 to 1.2, the microstructures shift from a typical dendrite structure to a hypoeutectic microstructure (x = 0.6), and then to a fully eutectic microstructure (x = 0.8) with a lamellar spacing only 110 nm, and finally culminate in the hypereutectic structure (x = 1.0, x = 1.2). The XRD results show that CoCrFeNiMox alloys have a single FCC phase when x is 0.2 or 0.4. When Mo content is over 0.6, it begins to separate Cr9Mo21Ni20 intermetallic compounds. The hardness of the CoCrFeNiMox alloys is increasing significantly from 172.8 to 763.7 HV with the increase of Mo content. Meanwhile, the fracture strength increased but the ductility decreases. Among these alloys, the CoCrFeNiMo0.6 alloy shows excellent integrated mechanical properties of compressive fracture strength and strain, which are 2051 Mpa and 23%, respectively.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Huang, C., Zhang, Y., Shen, J., and Vilar, R.: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).CrossRefGoogle Scholar
Tong, C-J., Chen, M-R., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., and Chang, S-Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).CrossRefGoogle Scholar
Senkov, O., Senkova, S., Woodward, C., and Miracle, D.: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).CrossRefGoogle Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).CrossRefGoogle Scholar
Nagase, T., Rack, P.D., Noh, J.H., and Egami, T.: In situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59, 32 (2015).CrossRefGoogle Scholar
Qiao, J.W., Ma, S.G., Huang, E.W., Chuang, C.P., Liaw, P.K., and Zhang, Y.: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. Mater. Sci. Forum 688, 419 (2011).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Zhang, H., Pan, Y., He, Y., and Jiao, H.: Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl. Surf. Sci. 257, 2259 (2011).CrossRefGoogle Scholar
Wen, L., Kou, H., Li, J., Chang, H., Xue, X., and Zhou, L.: Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics 17, 266 (2009).CrossRefGoogle Scholar
Xia, S., Yang, X., Chen, M., Yang, T., and Zhang, Y.: The Al effects of Co-free and V-containing high-entropy alloys. Metals 7, 18 (2017).CrossRefGoogle Scholar
Chen, S-K. and Kao, Y-F.: Near-constant resistivity in 4.2–360 K in a B2 Al2.08CoCrFeNi. AIP Adv. 2, 012111 (2012).CrossRefGoogle Scholar
Glicksman, M.E.: Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer Science & Business Media, New York, NY, 2010).Google Scholar
Lu, Y., Dong, Y., Guo, S., Jiang, L., Kang, H., Wang, T., Wen, B., Wang, Z., Jie, J., Cao, Z., Ruan, H., and Li, T.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).CrossRefGoogle ScholarPubMed
Mishra, A.K., Samal, S., and Biswas, K.: Solidification behaviour of Ti–Cu–Fe–Co–Ni high entropy alloys. Trans. Indian Inst. Met. 65, 725 (2012).CrossRefGoogle Scholar
Guo, S., Ng, C., and Liu, C.T.: Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J. Alloys Compd. 557, 77 (2013).CrossRefGoogle Scholar
Jiang, L., Cao, Z.Q., Jie, J.C., Zhang, J.J., Lu, Y.P., Wang, T.M., and Li, T.J.: Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J. Alloys Compd. 649, 585 (2015).CrossRefGoogle Scholar
Tan, Y., Li, J., Wang, J., and Kou, H.: Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics 85, 74 (2017).CrossRefGoogle Scholar
He, F., Wang, Z., Shang, X., Leng, C., Li, J., and Wang, J.: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).CrossRefGoogle Scholar
Liu, W.H., Yang, T., and Liu, C.T.: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 2 (2018).CrossRefGoogle Scholar
Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Liu, J., and Zhao, Y.: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).CrossRefGoogle Scholar
Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H., Zhao, Y., Cao, Z., and Li, T.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
He, F., Wang, Z., Cheng, P., Wang, Q., Li, J., Dang, Y., Wang, J., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
Lu, Y., Jiang, H., Guo, S., Wang, T., Cao, Z., and Li, T.: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).CrossRefGoogle Scholar
Ding, Z., He, Q., and Yang, Y.: Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Sci. China: Technol. Sci. 61, 159167 (2017).CrossRefGoogle Scholar
Dong, Y., Jiang, L., Jiang, H., Lu, Y., Wang, T., and Li, T.: Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy. Mater. Des. 82, 9197 (2015).CrossRefGoogle Scholar
E. ASTM: E9–89a, standard test methods of compression testing of metallic materials at room temperature. In Annual Book of ASTM Standards, Vol. 3 (ASTM International, Philadelphia, PA, 2000), pp. 19.Google Scholar
Shun, T-T., Chang, L-Y., and Shiu, M-H.: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater. Charact. 70, 63 (2012).CrossRefGoogle Scholar
Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
Jiang, H., Han, K., Qiao, D., Lu, Y., Cao, Z., and Li, T.: Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 4348 (2018).CrossRefGoogle Scholar
Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., and Li, T.: Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Appl. Phys. A: Mater. Sci. Process. 119, 291 (2015).CrossRefGoogle Scholar
Wang, Z., Huang, Y., Yang, Y., Wang, J., and Liu, C.T.: Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 94, 28 (2015).CrossRefGoogle Scholar
Liu, L., He, L.J., Qi, J.G., Wang, B., Zhao, Z.F., Shang, J., and Zhang, Y.: Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys. J. Alloys Compd. 654, 327 (2016).CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar