Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T17:50:55.212Z Has data issue: false hasContentIssue false

Patterns of morphologic diversification among the Rostroconchia

Published online by Cambridge University Press:  08 February 2016

Peter J. Wagner*
Affiliation:
Department of Paleobiology, MRC-121, Smithsonian Institution, Washington, D.C. 20560. E-mail: pjw1@midway.uchicago.edu

Abstract

Morphologic diversification among rostroconch molluscs is explored using multiple phylogenies derived from different methods. In addition to strict parsimony, phylogenetic estimates were derived using four different methods that employ stratigraphic data. The resultant phylogenies are generally very similar to one another and to the phylogeny proposed by Pojeta and Runnegar (1976). All estimates (including the Pojeta and Runnegar estimate) imply much lower morphologic separations among post-Ordovician rostroconchs (measured here as the frequency of character state change per branch) than among Cambro-Ordovician rostroconchs. However, the data do not suggest that morphologic evolution became more constrained among rostroconchs as a whole, but instead suggest a reduced characteristic rate of morphologic change in the clade that happened to survive the end-Ordovician extinction. Likelihood ratio tests provide strongest support for the hypothesis that morphologic evolution was more constrained within a derived subclade (corresponding to previous definitions of the Conocardioidea, minus the Eopteriidae) than it was in a broad paraphylum (corresponding to the Ribeirioidea + Eopteriidae). Estimates from each of the phylogenetic methods lead to the same conclusions. Various metrics indicate that the pattern is not due to poor sampling of Cambro-Ordovician species and thus merits a biological explanation. Nonphylogenetic analyses of morphologic disparity suggest a similar history of morphologic evolution, including the apparent difference in characteristic rates of morphologic evolution between paraclade and subclade.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1994. Four permutation tests for the presence of phylogenetic structure. Systematic Biology 43:430437.CrossRefGoogle Scholar
Alroy, J. In press. Equilibrial diversity dynamics in North American mammals. In McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa and communities.Google Scholar
Anstey, R. L., and Pachut, J. L. 1995. Phylogeny, diversity history and speciation in Paleozoic bryozoans. pp. 239284In Erwin, D. H. and Anstey, R. L., eds. New approaches to studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.CrossRefGoogle Scholar
Benton, M. J., and Storrs, G. W. 1994. Testing the quality of the fossil record: paleontological knowledge is improving. Geology 22:111114.2.3.CO;2>CrossRefGoogle Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Caldwell, M. W., and Chatterton, B. D. E. 1995. Phylogenetic analysis of some Silurian rostroconchs (Mollusca) from northwestern Canada. Canadian Journal of Earth Sciences 32:806827.CrossRefGoogle Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Paleozoic echinoderms. pp. 61100In Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Chappill, J. A. 1989. Quantitative characters in phylogenetic analysis. Cladistics 5:217234.CrossRefGoogle ScholarPubMed
de Queiroz, K., and Gauthier, J. A. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39:307322.CrossRefGoogle Scholar
de Queiroz, K., and Gauthier, J. A. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23:449480.CrossRefGoogle Scholar
de Queiroz, K., Donoghue, M. J., and Kim, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Reviews of Ecology and Systematics 26:657681.CrossRefGoogle Scholar
Doyle, J. A., and Donoghue, M. J. 1993. Phylogenies and angiosperm diversification. Paleobiology 19:141167.CrossRefGoogle Scholar
Eble, G. J. In press. Approaching the role of development in evolutionary radiations. In McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa and communities.Google Scholar
Edgecombe, G. D. 1992. Trilobite phylogeny and the Cambrian-Ordovician “event”: a cladistic reappraisal. pp. 144177In Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Erwin, D. H. 1990. Carboniferous–Triassic gastropod diversity patterns and the Permo-Triassic mass extinction. Paleobiology 16:187203.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the Early Paleozoic versus the Mesozoic. Evolution 41:11771186.CrossRefGoogle ScholarPubMed
Farris, J. S. 1989. The retention index and the rescaled consistency index. Cladistics 5:417419.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401410.CrossRefGoogle Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its implication in evolutionary paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Paleontological Society Short Courses in Paleontology No. 4:103122. University of Tennessee, Knoxville.Google Scholar
Fisher, D. C. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. pp. 133171In Grande, L. and Rieppel, O., eds. Interpreting the hierarchy of nature—from systematic patterns to evolutionary theories. Academic Press, Orlando, Fla.Google Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.CrossRefGoogle Scholar
Foote, M. 1991. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Science USA 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.CrossRefGoogle Scholar
Foote, M. 1996a. Perspective: evolutionary patterns in the fossil record. Evolution 50:111.CrossRefGoogle ScholarPubMed
Foote, M. 1996b. Models of morphological diversification. pp. 6286In Jablonski, D., Erwin, D. H. and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Gillespie, J. H. 1986. Variability of evolutionary rates of DNA. Genetics 113:10771091.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1979. The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. pp. 4177In Cracraft, J. and Eldredge, N., eds. Phylogenetic analysis and paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal of Molecular Evolution 36:182198.CrossRefGoogle ScholarPubMed
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R., and Molineux, I. J. 1992. Experimental phylogenetics—generation of a known phylogeny. Science 255:589592.CrossRefGoogle ScholarPubMed
Hoare, R. D., Mapes, R. H., and Brown, C. J. 1982. Some Mississippian and Pennsylvanian rostroconchs from the midcontinent region. Journal of Paleontology 56:123131.Google Scholar
Hoare, R. D., Steinker, P. J., and Mapes, R. H. 1988. New Carboniferous species of Hippocardia (Rostroconchia, Mollusca) from the midcontinent, USA. Journal of Paleontology 62:865868.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991. Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology 40:257270.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1994. Comparing the stratigraphic record to estimates of phylogeny. Paleobiology 20:470483.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Bull, J. J. 1996. A likelihood ratio test to detect conflicting phylogenetic signal. Systematic Biology 45:9298.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Hillis, D. M. 1993. Success of phylogenetic methods in the four-taxon case. Systematic Biology 42:247264.CrossRefGoogle Scholar
Huelsenbeck, J. P., Bull, J. J., and Cunningham, C. W. 1996. Combining data in phylogenetic analysis. Trends in Ecology and Evolution 11:152158.CrossRefGoogle ScholarPubMed
Jablonski, D. 1989. The biology of mass extinction: a palaeontological point of view. Philosophical Transactions of the Royal Society of London B 325:357568.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution. pp. 2175In Ross, R. M. and Allmon, W. D., eds. Causes of evolution—a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., and Cheetham, A. H. 1994. Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa. Paleobiology 20:407423.CrossRefGoogle Scholar
Johnston, D. I., and Chatterton, B. D. E. 1982. Some silicified Middle Silurian rostroconchs (Mollusca) from the Mackenzie Mountains, N.W.T., Canada. Canadian Journal of Earth Sciences 20:844858.CrossRefGoogle Scholar
Kauffman, S. A. 1993. The origins of order. Oxford University Press, Oxford.CrossRefGoogle Scholar
Kerber, M. 1988. Mikrofossilien aus Unterkambrischen Gesteinen der Montagne Noire, Frankreich. Palaeontographica A 202:127203.Google Scholar
Kim, J. 1993. Improving the accuracy of phylogenetic estimation by combining different methods. Systematic Biology 42:331340.CrossRefGoogle Scholar
Kluge, A. G., and Wolf, A. J. 1993. Cladistics: what's in a word? Cladistics 9:183199.CrossRefGoogle ScholarPubMed
Levinton, J. S. 1974. Trophic group and evolution of bivalve molluscs. Palaeontology 23:579585.Google Scholar
Li, W., Tanimura, M., and Sharp, P. M. 1987. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. Journal of Molecular Evolution 25:330342.CrossRefGoogle ScholarPubMed
MacKinnon, D. I. 1985. New Zealand late Middle Cambrian molluscs and the origin of Rostroconchia and Bivalvia. Alcheringa 9:6581.CrossRefGoogle Scholar
Maddison, W. P. 1995. Calculating the probability distributions of ancestral states reconstructed by parsimony on phylogenetic trees. Systematic Biology 44:474481.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Mooers, A. Ø., Page, R. D. M., Purvis, A., and Harvey, P. H. 1995. Phylogenetic noise leads to unbalanced cladistic tree reconstructions. Systematic Biology 44:332342.CrossRefGoogle Scholar
Morris, N. J. 1990. Early radiation of the Mollusca. pp. 7390In Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar
Müller, K. J. 1975. ‘Heraultia’ varensalensis Cobbold (Crustacea) aus dem unteren Kambrium, der älteste Fall von Geschlechts-dimorphismus. Paläontologicishe Zeitschrift 49:168180.CrossRefGoogle Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. pp. 89118In Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293-A:407417.CrossRefGoogle Scholar
Paul, C. R. C. 1977. Evolution of primitive echinoderms. pp. 123158in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids. Pp.199213In Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Peel, J. S. 1991a. The Classes Tergomya and Helcionelloida, and early molluscan evolution. Gr⊘nlands Geologiske Unders⊘gelse Bulletin 161:1165.Google Scholar
Peel, J. S. 1991b. Functional morphology of the Class Helcionelloida nov., and the early evolution of the Mollusca. pp. 157177In Simonetta, A. and Conway Morris, S., eds. The early evolution of the Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar
Pojeta, J. Jr. 1976. Geographic distribution of Cambrian and Ordovician rostroconch mollusks. pp. 2736In Gray, J. and Boucot, A. J., eds. Historical biogeography, plate tectonics and the changing environment. Oregon State University Press, Corvallis.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. Geological Survey Professional Paper 968:188.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1985. The early evolution of diasome molluscs. The Mollusca 10:295336.Google Scholar
Pojeta, J. Jr., Runnegar, B., Morris, N. J., and Newell, N. D. 1972. Rostroconchia: a new class of bivalved mollusks. Science 177:264267.CrossRefGoogle ScholarPubMed
Pojeta, J. Jr., Gilbert-Tomlinson, J., and Shergold, J. H. 1977. Cambrian and Ordovician rostroconch molluscs from northern Australia. Bureau of Mineral Resources, Geology and Geophysics 171:154.Google Scholar
Purvis, A., Nee, S., and Harvey, P. H. 1995. Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society of London B 260:329333.Google ScholarPubMed
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.CrossRefGoogle Scholar
Rice, J. A. 1988. Mathematical statistics and data analysis. Wadsworth and Brooks, Pacific Grove, Calif.Google Scholar
Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J. 1990. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:16711684.CrossRefGoogle ScholarPubMed
Runnegar, B. 1978. Origin and evolution of the Class Rostroconchia. Philosophical Transactions of the Royal Society of London B 284:319333.Google Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australasian Palaeontologists 1:121144.Google Scholar
Runnegar, B. 1996. Early evolution of the Mollusca: the fossil record. pp. 7787in Taylor, J. D., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Runnegar, B., and Pojeta, J. Jr. 1974. Molluscan phylogeny: the paleontological viewpoint. Science 186:311317.CrossRefGoogle ScholarPubMed
Sanderson, M. J., and Donoghue, M. J. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264:15901593.CrossRefGoogle ScholarPubMed
Sanderson, M. J., and Donoghue, M. J. 1996. Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology and Evolution 11:1520.CrossRefGoogle ScholarPubMed
Siddall, M. E. 1996. Stratigraphic consistency and the shape of things. Systematic Biology 45:111115.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record—documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Smith, A. B., Lafay, B., and Christen, R. 1992. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philosophical Transactions of the Royal Society of London B 338:365382.Google ScholarPubMed
Smith, A. B., and Littlewood, D. T. J. 1994. Paleontological data and molecular phylogenetic analysis. Paleobiology 20:259273.CrossRefGoogle Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Sober, E. 1988. Reconstructing the past. MIT Press, Cambridge.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d ed. W. H. Freeman, New York.Google Scholar
Steiner, G. 1992. Phylogeny and classification of Scaphopoda. Journal of Molluscan Studies 58:385400.CrossRefGoogle Scholar
Strait, D. S., Moniz, M. A., and Strait, P. T. 1996. Finite mixture coding: a new approach to coding continuous characters. Systematic Biology 45:6778.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Computer program distributed by the Illinois Natural History Survey, Champaign.Google Scholar
Thorpe, R. S. 1984. Coding morphometric characters for constructing distance Wagner networks. Evolution 38:244255.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.CrossRefGoogle Scholar
Valentine, J. W. 1986. Fossil record of the origin of Baupläne and its implications. pp. 209222In Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin and Heidelberg.CrossRefGoogle Scholar
Valentine, J. W., and Campbell, C. A. 1975. Genetic regulation and the fossil record. American Scientist 63:673680.Google ScholarPubMed
Valentine, J. W., and Erwin, D. H. 1987. Interpreting great developmental experiments: the fossil record. pp. 71107In Raff, R. A. and Raff, E. C., eds. Development as an evolutionary process. Liss, New York.Google Scholar
Valentine, J. W., and Walker, T. D. 1986. Diversity trends within a model taxonomic hierarchy. Physica 22:3142.Google Scholar
Van Valen, L. 1978. Why not to be a cladist. Evolutionary Theory 3:285299.Google Scholar
Van Valen, L. 1985. A theory of origination and extinction. Evolutionary Theory 7:133142.Google Scholar
Wagner, P. J. 1995a. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153178.CrossRefGoogle Scholar
Wagner, P. J. 1995b. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wagner, P. J. In press. Phylogenetics of the earliest gastropods. Smithsonian Institution Contributions to Paleobiology.Google Scholar
Walker, T. D., and Valentine, J. W. 1984. Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist 124:887899.CrossRefGoogle Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93131.CrossRefGoogle Scholar
Wright, S. 1982. Character change, speciation, and the higher taxa. Evolution 36:427443.CrossRefGoogle ScholarPubMed