Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T18:23:17.576Z Has data issue: false hasContentIssue false

The role of rare innate immune cells in Type 2 immune activation against parasitic helminths

Published online by Cambridge University Press:  06 June 2017

LAUREN M. WEBB
Affiliation:
Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY 14853, USA
ELIA D. TAIT WOJNO*
Affiliation:
Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY 14853, USA
*
*Corresponding author: Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY 14853, USA. E-mail: elia.taitwojno@cornell.edu

Summary

The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles – located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. E. and Maizels, R. M. (2011). Diversity and dialogue in immunity to helminths. Nature Reviews Immunology 11, 375388.CrossRefGoogle ScholarPubMed
Bell, B. D., Kitajima, M., Larson, R. P., Stoklasek, T. A., Dang, K., Sakamoto, K., Wagner, K.-U., Reizis, B., Hennighausen, L. and Ziegler, S. F. (2013). The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nature Immunology 14, 364371.CrossRefGoogle Scholar
Besnard, A.-G., Togbe, D., Guillou, N., Erard, F., Quesniaux, V. and Ryffel, B. (2011). IL-33-activated dendritic cells are critical for allergic airway inflammation. European Journal of Immunology 41, 16751686.CrossRefGoogle ScholarPubMed
Bouchery, T., Kyle, R., Ronchese, F. and Le Gros, G. (2014). The differentiation of CD4(+) T-helper cell subsets in the context of Helminth parasite infection. Frontiers in Immunology 5, 487.CrossRefGoogle ScholarPubMed
Bouchery, T., Kyle, R., Camberis, M., Shepherd, A., Filbey, K., Smith, A., Harvie, M., Painter, G., Johnston, K., Ferguson, P., Jain, R., Roediger, B., Delahunt, B., Weninger, W., Forbes-Blom, E. and Le Gros, G. (2015). ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nature Communications 6, 6970.CrossRefGoogle Scholar
Boyd, A., Ribeiro, J. M. C. and Nutman, T. B. (2014). Human CD117 (cKit)+ innate lymphoid cells have a discrete transcriptional profile at homeostasis and are expanded during filarial infection. PLoS ONE 9, e108649.CrossRefGoogle ScholarPubMed
Camberis, M., Le Gros, G. and Urban, J. (2003). Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Current Protocols in Immunology/edited by John E. Coligan… [et al.] Chapter 19, Unit 19.12, pp. 1–27.CrossRefGoogle Scholar
Cheng, L. E., Sullivan, B. M., Retana, L. E., Allen, C. D. C., Liang, H.-E. and Locksley, R. M. (2015). IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. Journal of Experimental Medicine 212, 513524.CrossRefGoogle ScholarPubMed
Cherrier, M., Sawa, S. and Eberl, G. (2012). Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. Journal of Experimental Medicine 209, 729740.CrossRefGoogle ScholarPubMed
Chu, D. K., Jimenez-Saiz, R., Verschoor, C. P., Walker, T. D., Goncharova, S., Llop-Guevara, A., Shen, P., Gordon, M. E., Barra, N. G., Bassett, J. D., Kong, J., Fattouh, R., McCoy, K. D., Bowdish, D. M., Erjefalt, J. S., Pabst, O., Humbles, A. A., Kolbeck, R., Waserman, S. and Jordana, M. (2014). Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo . Journal of Experimental Medicine 211, 16571672.CrossRefGoogle ScholarPubMed
Cisse, B., Caton, M. L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D., Zweier, C., den Hollander, N. S., Kant, S. G., Holter, W., Rauch, A., Zhuang, Y. and Reizis, B. (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 3748.CrossRefGoogle ScholarPubMed
Cliffe, L. J., Humphreys, N. E., Lane, T. E., Potten, C. S., Booth, C. and Grencis, R. K. (2005). Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 14631465.CrossRefGoogle ScholarPubMed
Connor, L. M., Tang, S. C., Camberis, M., Le Gros, G. and Ronchese, F. (2014). Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo . Journal of Immunology 193, 27092717.CrossRefGoogle ScholarPubMed
Connor, L. M., Tang, S.-C., Cognard, E., Ochiai, S., Hilligan, K. L., Old, S. I., Pellefigues, C., White, R. F., Patel, D., Smith, A. A. T., Eccles, D. A., Lamiable, O., McConnell, M. J. and Ronchese, F. (2016). Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. Journal of Experimental Medicine 214, 125142.CrossRefGoogle ScholarPubMed
Cook, P. C., Jones, L. H., Jenkins, S. J., Wynn, T. A., Allen, J. E. and MacDonald, A. S. (2012). Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo . Proceedings of the National Academy of Sciences of the United States of America 109, 99779982.CrossRefGoogle ScholarPubMed
Cook, P. C., Owen, H., Deaton, A. M., Borger, J. G., Brown, S. L., Clouaire, T., Jones, G.-R., Jones, L. H., Lundie, R. J., Marley, A. K., Morrison, V. L., Phythian-Adams, A. T., Wachter, E., Webb, L. M., Sutherland, T. E., Thomas, G. D., Grainger, J. R., Selfridge, J., McKenzie, A. N. J., Allen, J. E., Fagerholm, S. C., Maizels, R. M., Ivens, A. C., Bird, A. and MacDonald, A. S. (2015). A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nature Communications 6, 6920.CrossRefGoogle ScholarPubMed
de Heer, H. J., Hammad, H., Soullié, T., Hijdra, D., Vos, N., Willart, M. A. M., Hoogsteden, H. C. and Lambrecht, B. N. (2004). Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. Journal of Experimental Medicine 200, 8998.CrossRefGoogle ScholarPubMed
de Jong, E. C., Vieira, P. L., Kalinski, P., Schuitemaker, J. H. N., Tanaka, Y., Wierenga, E. A., Yazdanbakhsh, M. and Kapsenberg, M. L. (2002). Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. Journal of Immunology (Baltimore, Md: 1950) 168, 17041709.CrossRefGoogle ScholarPubMed
de Kleer, I. M., Kool, M., de Bruijn, M. J. W., Willart, M., van Moorleghem, J., Schuijs, M. J., Plantinga, M., Beyaert, R., Hams, E., Fallon, P. G., Hammad, H., Hendriks, R. W. and Lambrecht, B. N. (2016). Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45, 12851298.CrossRefGoogle ScholarPubMed
Dewas, C., Chen, X., Honda, T., Junttila, I., Linton, J., Udey, M. C., Porcella, S. F., Sturdevant, D. E., Feigenbaum, L., Koo, L., Williams, J. and Paul, W. E. (2015). TSLP expression: analysis with a ZsGreen TSLP reporter mouse. Journal of Immunology 194, 13721380.CrossRefGoogle ScholarPubMed
Dudeck, A., Dudeck, J., Scholten, J., Petzold, A., Surianarayanan, S., Köhler, A., Peschke, K., Vöhringer, D., Waskow, C., Krieg, T., Müller, W., Waisman, A., Hartmann, K., Gunzer, M. and Roers, A. (2011). Mast cells are key promoters of contact allergy that mediate the adjuvant effects of Haptens. Immunity 34, 973984.CrossRefGoogle ScholarPubMed
Eckl-Dorna, J., Ellinger, A., Blatt, K., Ghanim, V., Steiner, I., Pavelka, M., Valent, P., Valenta, R. and Niederberger, V. (2012). Basophils are not the key antigen-presenting cells in allergic patients. Allergy 67, 601608.CrossRefGoogle Scholar
Egawa, M., Mukai, K., Yoshikawa, S., Iki, M., Mukaida, N., Kawano, Y., Minegishi, Y. and Karasuyama, H. (2013). Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38, 570580.CrossRefGoogle ScholarPubMed
Esser-von Bieren, J., Mosconi, I., Guiet, R., Piersgilli, A., Volpe, B., Chen, F., Gause, W. C., Seitz, A., Verbeek, J. S. and Harris, N. L. (2013). Antibodies trap tissue migrating Helminth Larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages. PLoS Pathogens 9, e1003771.CrossRefGoogle ScholarPubMed
Everts, B., Adegnika, A. A., Kruize, Y. C. M., Smits, H. H., Kremsner, P. G. and Yazdanbakhsh, M. (2010). Functional impairment of human myeloid dendritic cells during Schistosoma haematobium infection. PLoS Neglected Tropical Diseases 4, e667.CrossRefGoogle ScholarPubMed
Everts, B., Tussiwand, R., Dreesen, L., Fairfax, K. C., Huang, S. C.-C., Smith, A. M., O'Neill, C. M., Lam, W. Y., Edelson, B. T., Urban, J. F., Murphy, K. M. and Pearce, E. J. (2016). Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. Journal of Experimental Medicine 213, 3551.CrossRefGoogle ScholarPubMed
Fairfax, K. C., Everts, B., Amiel, E., Smith, A. M., Schramm, G., Haas, H., Randolph, G. J., Taylor, J. J. and Pearce, E. J. (2015). IL-4-secreting secondary T follicular helper (Tfh) cells arise from memory T cells, not persisting Tfh cells, through a B cell-dependent mechanism. Journal of Immunology 194, 29993010.CrossRefGoogle Scholar
Falcone, F. H., Telford, G., Hooi, D., Brown, A. P., Seabra, R., Feary, J., Venn, A., Britton, J. and Pritchard, D. I. (2009). Antigen-driven basophil activation is indicative of early Necator americanus infection in IgE-seronegative patients. Journal of Allergy and Clinical Immunology 124, 13431350.e7.CrossRefGoogle ScholarPubMed
Fallon, P. G., Ballantyne, S. J., Mangan, N. E., Barlow, J. L., Dasvarma, A., Hewett, D. R., McIlgorm, A., Jolin, H. E. and McKenzie, A. N. J. (2006). Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. Journal of Experimental Medicine 203, 11051116.CrossRefGoogle ScholarPubMed
Gao, Y., Nish, S. A., Jiang, R., Hou, L., Licona-Limón, P., Weinstein, J. S., Zhao, H. and Medzhitov, R. (2013). Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39, 722732.CrossRefGoogle ScholarPubMed
Gause, W. C., Wynn, T. A. and Allen, J. E. (2013). Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology 13, 607614.CrossRefGoogle ScholarPubMed
Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., Garnier, L., Pouzolles, M., Brulin, B., Bruschi, M., Harcus, Y., Zimmermann, V. S., Taylor, N., Maizels, R. M. and Jay, P. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226230.CrossRefGoogle ScholarPubMed
Gessner, A., Mohrs, K. and Mohrs, M. (2005). Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. Journal of Immunology (Baltimore, Md: 1950) 174, 10631072.CrossRefGoogle ScholarPubMed
Giacomin, P. R., Siracusa, M. C., Walsh, K. P., Grencis, R. K., Kubo, M., Comeau, M. R. and Artis, D. (2012). Thymic stromal lymphopoietin-dependent basophils promote Th2 cytokine responses following intestinal helminth infection. Journal of Immunology 189, 43714378.CrossRefGoogle ScholarPubMed
Halim, T. Y. F., Steer, C. A., Mathä, L., Gold, M. J., Martinez-Gonzalez, I., McNagny, K. M., McKenzie, A. N. J. and Takei, F. (2014). Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425435.CrossRefGoogle ScholarPubMed
Halim, T. Y. F., Hwang, Y. Y., Scanlon, S. T., Zaghouani, H., Garbi, N., Fallon, P. G. and McKenzie, A. N. J. (2015). Group 2 innate lymphoid cells license dendritic cells to potentiate memory T. Nature Immunology 17, 5764.CrossRefGoogle Scholar
Hammad, H. and Lambrecht, B. N. (2015). Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 2940.CrossRefGoogle ScholarPubMed
Hams, E., Armstrong, M. E., Barlow, J. L., Saunders, S. P., Schwartz, C., Cooke, G., Fahy, R. J., Crotty, T. B., Hirani, N., Flynn, R. J., Voehringer, D., McKenzie, A. N. J., Donnelly, S. C. and Fallon, P. G. (2014). IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America 111, 367372.CrossRefGoogle ScholarPubMed
Henry, E. K., Sy, C. B., Inclan-Rico, J. M., Espinosa, V., Ghanny, S. S., Dwyer, D. F., Soteropoulos, P., Rivera, A. and Siracusa, M. C. (2016). Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. Journal of Experimental Medicine 213, 16631673.CrossRefGoogle ScholarPubMed
Hepworth, M. R., Daniłowicz-Luebert, E., Rausch, S., Metz, M., Klotz, C., Maurer, M. and Hartmann, S. (2012 a). Mast cells orchestrate type 2 immunity to helminths through regulation of tissue-derived cytokines. Proceedings of the National Academy of Sciences of the United States of America 109, 66446649.CrossRefGoogle ScholarPubMed
Hepworth, M. R., Maurer, M. and Hartmann, S. (2012 b). Regulation of type 2 immunity to helminths by mast cells. Gut Microbes 3, 476481.CrossRefGoogle ScholarPubMed
Herbst, T., Esser, J., Prati, M., Kulagin, M., Stettler, R., Zaiss, M. M., Hewitson, J. P., Merky, P., Verbeek, J. S., Bourquin, C., Camberis, M., Prout, M., Maizels, R. M., Le Gros, G. and Harris, N. L. (2012). Antibodies and IL-3 support helminth-induced basophil expansion. Proceedings of the National Academy of Sciences of the United States of America 109, 1495414959.CrossRefGoogle ScholarPubMed
Hewitson, J. P., Filbey, K. J., Esser-von Bieren, J., Camberis, M., Schwartz, C., Murray, J., Reynolds, L. A., Blair, N., Robertson, E., Harcus, Y., Boon, L., Huang, S. C.-C., Yang, L., Tu, Y., Miller, M. J., Voehringer, D., Le Gros, G., Harris, N. and Maizels, R. M. (2015). Concerted activity of IgG1 antibodies and IL-4/IL-25-dependent effector cells trap helminth larvae in the tissues following vaccination with defined secreted antigens, providing sterile immunity to challenge infection. PLoS Pathogens 11, e1004676.CrossRefGoogle ScholarPubMed
Howitt, M. R., Lavoie, S., Michaud, M., Blum, A. M., Tran, S. V., Weinstock, J. V., Gallini, C. A., Redding, K., Margolskee, R. F., Osborne, L. C., Artis, D. and Garrett, W. S. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 13291333.CrossRefGoogle ScholarPubMed
Hoyler, T., Klose, C. S. N., Souabni, A., Turqueti-Neves, A., Pfeifer, D., Rawlins, E. L., Voehringer, D., Busslinger, M. and Diefenbach, A. (2012). The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634648.CrossRefGoogle ScholarPubMed
Huang, L. and Appleton, J. A. (2016). Eosinophils in Helminth infection: defenders and dupes. Trends in Parasitology 32, 798807.CrossRefGoogle ScholarPubMed
Huang, Y., Guo, L., Qiu, J., Chen, X., Hu-Li, J., Siebenlist, U., Williamson, P. R., Urban, J. F. and Paul, W. E. (2014). IL-25-responsive, lineage-negative KLRG1hi cells are multipotential “inflammatory” type 2 innate lymphoid cells. Nature Immunology 16, 161169.CrossRefGoogle ScholarPubMed
Ierna, M. X., Scales, H. E., Saunders, K. L. and Lawrence, C. E. (2008). Mast cell production of IL-4 and TNF may be required for protective and pathological responses in gastrointestinal helminth infection. Mucosal Immunology 1, 147155.CrossRefGoogle ScholarPubMed
Ito, T., Wang, Y.-H., Duramad, O., Hori, T., Delespesse, G. J., Watanabe, N., Qin, F. X.-F., Yao, Z., Cao, W. and Liu, Y.-J. (2005). TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. Journal of Experimental Medicine 202, 12131223.CrossRefGoogle ScholarPubMed
Kim, B. S., Siracusa, M. C., Saenz, S. A., Noti, M., Monticelli, L. A., Sonnenberg, G. F., Hepworth, M. R., Van Voorhees, A. S., Comeau, M. R. and Artis, D. (2013). TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Science translational medicine 5, 170ra16.CrossRefGoogle ScholarPubMed
Kim, B. S., Wang, K., Siracusa, M. C., Saenz, S. A., Brestoff, J. R., Monticelli, L. A., Noti, M., Tait Wojno, E. D., Fung, T. C., Kubo, M. and Artis, D. (2014). Basophils promote innate lymphoid cell responses in inflamed skin. Journal of Immunology 193, 37173725.CrossRefGoogle ScholarPubMed
King, C. L., Xianli, J., Malhotra, I., Liu, S., Mahmoud, A. A. and Oettgen, H. C. (1997). Mice with a targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni . Journal of Immunology (Baltimore, MD: 1950) 158, 294300.CrossRefGoogle ScholarPubMed
King, I. L. and Mohrs, M. (2009). IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. Journal of Experimental Medicine 206, 10011007.CrossRefGoogle ScholarPubMed
Klose, C. S. N. and Artis, D. (2016). Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nature Immunology 17, 765774.CrossRefGoogle ScholarPubMed
Knipper, J. A., Willenborg, S., Brinckmann, J., Bloch, W., Maaß, T., Wagener, R., Krieg, T., Sutherland, T., Munitz, A., Rothenberg, M. E., Niehoff, A., Richardson, R., Hammerschmidt, M., Allen, J. E. and Eming, S. A. (2015). Interleukin-4 receptor a signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 43, 803816.CrossRefGoogle ScholarPubMed
Kroeger, K. M., Sullivan, B. M. and Locksley, R. M. (2009). IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88- and p38alpha-dependent pathway. Journal of Leukocyte Biology 86, 769778.CrossRefGoogle Scholar
Kumamoto, Y., Linehan, M., Weinstein, J. S., Laidlaw, B. J., Craft, J. E. and Iwasaki, A. (2013). CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39, 733743.CrossRefGoogle ScholarPubMed
Larson, D., Cooper, P. J., Hübner, M. P., Reyes, J., Vaca, M., Chico, M., Kong, H. H. and Mitre, E. (2012 a). Helminth infection is associated with decreased basophil responsiveness in human beings. Journal of Allergy and Clinical Immunology 130, 270272.CrossRefGoogle ScholarPubMed
Larson, D., Hubner, M. P., Torrero, M. N., Morris, C. P., Brankin, A., Swierczewski, B. E., Davies, S. J., Vonakis, B. M. and Mitre, E. (2012 b). Chronic Helminth infection reduces basophil responsiveness in an IL-10-dependent manner. Journal of Immunology (Baltimore, Md: 1950) 188, 41884199.CrossRefGoogle Scholar
Lawrence, C. E., Paterson, Y. Y. W., Wright, S. H., Knight, P. A. and Miller, H. R. P. (2004). Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127, 155165.CrossRefGoogle ScholarPubMed
Lefrançais, E., Duval, A., Mirey, E., Roga, S., Espinosa, E., Cayrol, C. and Girard, J.-P. (2014). Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America 111, 1550215507.CrossRefGoogle ScholarPubMed
León, B., Ballesteros-Tato, A., Browning, J. L., Dunn, R., Randall, T. D. and Lund, F. E. (2012). Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nature Immunology 13, 681690.CrossRefGoogle ScholarPubMed
Liu, A. Y., Dwyer, D. F., Jones, T. G., Bankova, L. G., Shen, S., Katz, H. R., Austen, K. F. and Gurish, M. F. (2013). Mast cells recruited to mesenteric lymph nodes during helminth infection remain hypogranular and produce IL-4 and IL-6. Journal of Immunology 190, 17581766.CrossRefGoogle ScholarPubMed
Lobos, E., Nutman, T. B., Hothersall, J. S. and Moncada, S. (2003). Elevated immunoglobulin E against recombinant Brugia malayi -Glutamyl Transpeptidase in patients with Bancroftian Filariasis: association with tropical pulmonary eosinophilia or putative immunity. Infection and Immunity 71, 747753.CrossRefGoogle ScholarPubMed
Lundie, R. J., Webb, L. M., Marley, A. K., Phythian-Adams, A. T., Cook, P. C., Jackson-Jones, L. H., Brown, S., Maizels, R. M., Boon, L., O'Keeffe, M. and MacDonald, A. S. (2016). A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection. Immunology and Cell Biology 94, 400410.CrossRefGoogle ScholarPubMed
MacDonald, A. S. and Maizels, R. M. (2008). Alarming dendritic cells for Th2 induction. Journal of Experimental Medicine 205, 1317.CrossRefGoogle ScholarPubMed
Maizels, R. M. and Withers, D. R. (2014). MHC-II: a mutual support system for ILCs and T cells? Immunity 41, 174176.CrossRefGoogle ScholarPubMed
Martinez-Gonzalez, I., Mathä, L., Steer, C. A., Ghaedi, M., Poon, G. F. T. and Takei, F. (2016). Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198208.CrossRefGoogle ScholarPubMed
McDermott, J. R., Bartram, R. E., Knight, P. A., Miller, H. R. P., Garrod, D. R. and Grencis, R. K. (2003). Mast cells disrupt epithelial barrier function during enteric nematode infection. Proceedings of the National Academy of Sciences 100, 77617766.CrossRefGoogle ScholarPubMed
Meredith, M. M., Liu, K., Darrasse-Jeze, G., Kamphorst, A. O., Schreiber, H. A., Guermonprez, P., Idoyaga, J., Cheong, C., Yao, K. H., Niec, R. E. and Nussenzweig, M. C. (2012). Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. Journal of Experimental Medicine 209, 11531165.CrossRefGoogle ScholarPubMed
Min, B., Prout, M., Hu-Li, J., Zhu, J., Jankovic, D., Morgan, E. S., Urban, J. F., Dvorak, A. M., Finkelman, F. D., LeGros, G. and Paul, W. E. (2004). Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. Journal of Experimental Medicine 200, 507517.CrossRefGoogle ScholarPubMed
Mirchandani, A. S., Besnard, A.-G., Yip, E., Scott, C., Bain, C. C., Cerovic, V., Salmond, R. J. and Liew, F. Y. (2014). Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. Journal of Immunology 192, 24422448.CrossRefGoogle ScholarPubMed
Mitchell, K. M., Mutapi, F., Savill, N. J. and Woolhouse, M. E. J. (2012). Protective immunity to Schistosoma haematobium infection is primarily an anti-fecundity response stimulated by the death of adult worms. Proceedings of the National Academy of Sciences of the United States of America 109, 1334713352.CrossRefGoogle ScholarPubMed
Mitre, E., Taylor, R. T., Kubofcik, J. and Nutman, T. B. (2004). Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections. Journal of Immunology (Baltimore, Md: 1950) 172, 24392445.CrossRefGoogle Scholar
Mohapatra, A., Van Dyken, S. J., Schneider, C., Nussbaum, J. C., Liang, H.-E. and Locksley, R. M. (2015). Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunology 9, 275286.CrossRefGoogle ScholarPubMed
Monticelli, L. A., Sonnenberg, G. F., Abt, M. C., Alenghat, T., Ziegler, C. G. K., Doering, T. A., Angelosanto, J. M., Laidlaw, B. J., Yang, C. Y., Sathaliyawala, T., Kubota, M., Turner, D., Diamond, J. M., Goldrath, A. W., Farber, D. L., Collman, R. G., Wherry, E. J. and Artis, D. (2011). Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology 12, 10451054.CrossRefGoogle ScholarPubMed
Monticelli, L. A., Osborne, L. C., Noti, M., Tran, S. V., Zaiss, D. M. W. and Artis, D. (2015). IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proceedings of the National Academy of Sciences 112, 1076210767.CrossRefGoogle ScholarPubMed
Monticelli, L. A., Buck, M. D., Flamar, A.-L., Saenz, S. A., Wojno, E. D. T., Yudanin, N. A., Osborne, L. C., Hepworth, M. R., Tran, S. V., Rodewald, H.-R., Shah, H., Cross, J. R., Diamond, J. M., Cantu, E., Christie, J. D., Pearce, E. L. and Artis, D. (2016). Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nature Immunology 17, 16561665.CrossRefGoogle ScholarPubMed
Morales, J. K., Saleem, S. J., Martin, R. K., Saunders, B. L., Barnstein, B. O., Faber, T. W., Pullen, N. A., Kolawole, E. M., Brooks, K. B., Norton, S. K., Sturgill, J., Graham, L., Bear, H. D., Urban, J. F., Lantz, C. S., Conrad, D. H. and Ryan, J. J. (2014). Myeloid-derived suppressor cells enhance IgE-mediated mast cell responses. Journal of Leukocyte Biology 95, 643650.CrossRefGoogle ScholarPubMed
Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Furusawa, J.-I., Ohtani, M., Fujii, H. and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463, 540544.CrossRefGoogle ScholarPubMed
Murray, P. J. and Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology 11, 723737.CrossRefGoogle ScholarPubMed
Nair, M. G., Du, Y., Perrigoue, J. G., Zaph, C., Taylor, J. J., Goldschmidt, M., Swain, G. P., Yancopoulos, G. D., Valenzuela, D. M., Murphy, A., Karow, M., Stevens, S., Pearce, E. J. and Artis, D. (2009). Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type 2 inflammation in the lung. Journal of Experimental Medicine 206, 937952.CrossRefGoogle ScholarPubMed
Nakamura, T., Maeda, S., Horiguchi, K., Maehara, T., Aritake, K., Choi, B.-I., Iwakura, Y., Urade, Y. and Murata, T. (2015). PGD2 deficiency exacerbates food antigen-induced mast cell hyperplasia. Nature Communications 6, 7514.CrossRefGoogle ScholarPubMed
Nausch, N., Appleby, L. J., Sparks, A. M., Midzi, N., Mduluza, T. and Mutapi, F. (2015). Group 2 innate lymphoid cell proportions are diminished in young Helminth infected children and restored by curative anti-helminthic treatment. PLoS Neglected Tropical Diseases 9, e0003627.CrossRefGoogle ScholarPubMed
Nei, Y., Obata-Ninomiya, K., Tsutsui, H., Ishiwata, K., Miyasaka, M., Matsumoto, K., Nakae, S., Kanuka, H., Inase, N. and Karasuyama, H. (2013). GATA-1 regulates the generation and function of basophils. Proceedings of the National Academy of Sciences of the United States of America 110, 1862018625.CrossRefGoogle ScholarPubMed
Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K. A., Bucks, C., Kane, C. M., Fallon, P. G., Pannell, R., Jolin, H. E. and McKenzie, A. N. J. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 13671370.CrossRefGoogle ScholarPubMed
Nieves, W., Hung, L.-Y., Oniskey, T. K., Boon, L., Foretz, M., Viollet, B. and Herbert, D. R. (2016). Myeloid-restricted AMPKα1 promotes host immunity and protects against IL-12/23p40–dependent lung injury during hookworm infection. Journal of Immunology (Baltimore, Md: 1950) 196, 46324640.CrossRefGoogle ScholarPubMed
Noti, M., Wojno, E. D. T., Kim, B. S., Siracusa, M. C., Giacomin, P. R., Nair, M. G., Benitez, A. J., Ruymann, K. R., Muir, A. B., Hill, D. A., Chikwava, K. R., Moghaddam, A. E., Sattentau, Q. J., Alex, A., Zhou, C., Yearley, J. H., Menard-Katcher, P., Kubo, M., Obata-Ninomiya, K., Karasuyama, H., Comeau, M. R., Brown-Whitehorn, T., de Waal Malefyt, R., Sleiman, P. M., Hakonarson, H., Cianferoni, A., Falk, G. W., Wang, M.-L., Spergel, J. M. and Artis, D. (2013). Thymic stromal lymphopoietin–elicited basophil responses promote eosinophilic esophagitis. Nature Medicine 19, 10051013.CrossRefGoogle ScholarPubMed
Obata-Ninomiya, K., Ishiwata, K., Tsutsui, H., Nei, Y., Yoshikawa, S., Kawano, Y., Minegishi, Y., Ohta, N., Watanabe, N., Kanuka, H. and Karasuyama, H. (2013). The skin is an important bulwark of acquired immunity against intestinal helminths. Journal of Experimental Medicine 210, 25832595.CrossRefGoogle ScholarPubMed
Ohnmacht, C. and Voehringer, D. (2010). Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells. Journal of Immunology 184, 344350.CrossRefGoogle ScholarPubMed
Ohnmacht, C., Schwartz, C., Panzer, M., Schiedewitz, I., Naumann, R. and Voehringer, D. (2010). Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33, 364374.CrossRefGoogle ScholarPubMed
Okamoto, M., Matsuda, H., Joetham, A., Lucas, J. J., Domenico, J., Yasutomo, K., Takeda, K. and Gelfand, E. W. (2009). Jagged1 on dendritic cells and Notch on CD4+ T cells initiate lung allergic responsiveness by inducing IL-4 production. Journal of Immunology 183, 29953003.CrossRefGoogle ScholarPubMed
Oliphant, C. J., Hwang, Y. Y., Walker, J. A., Salimi, M., Wong, S. H., Brewer, J. M., Englezakis, A., Barlow, J. L., Hams, E., Scanlon, S. T., Ogg, G. S., Fallon, P. G. and McKenzie, A. N. J. (2014). MHCII-mediated dialog between group 2 innate lymphoid cells and CD4. Immunity 41, 283295.CrossRefGoogle ScholarPubMed
Park, M. K., Cho, M. K., Kang, S. A., Park, H.-K., Kim, Y. S., Kim, K. U., Ahn, S. C., Kim, D.-H. and Yu, H. S. (2011). Protease-activated receptor 2 is involved in Th2 responses against Trichinella spiralis infection. Korean Journal of Parasitology 49, 235243.CrossRefGoogle ScholarPubMed
Patel, N., Wu, W., Mishra, P. K., Chen, F., Millman, A., Csóka, B., Koscsó, B., Eltzschig, H. K., Haskó, G. and Gause, W. C. (2014). A2B adenosine receptor induces protective antihelminth type 2 immune responses. CHOM 15, 339350.Google ScholarPubMed
Pearce, E. J. and MacDonald, A. S. (2002). The immunobiology of schistosomiasis. Nature Reviews Immunology 2, 499511.CrossRefGoogle ScholarPubMed
Pecaric-Petkovic, T., Didichenko, S. A., Kaempfer, S., Spiegl, N. and Dahinden, C. A. (2009). Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113, 15261534.CrossRefGoogle ScholarPubMed
Pelly, V. S., Kannan, Y., Coomes, S. M., Entwistle, L. J., ckerl, D. R. U., Seddon, B., MacDonald, A. S., McKenzie, A. and Wilson, M. S. (2016). IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunology 9, 14071417.CrossRefGoogle ScholarPubMed
Perrigoue, J. G., Saenz, S. A., Siracusa, M. C., Allenspach, E. J., Taylor, B. C., Giacomin, P. R., Nair, M. G., Du, Y., Zaph, C., van Rooijen, N., Comeau, M. R., Pearce, E. J., Laufer, T. M. and Artis, D. (2009). MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nature Immunology 10, 697705.CrossRefGoogle ScholarPubMed
Pesce, J. T., Ramalingam, T. R., Mentink-Kane, M. M., Wilson, M. S., El Kasmi, K. C., Smith, A. M., Thompson, R. W., Cheever, A. W., Murray, P. J. and Wynn, T. A. (2009 a). Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathogens 5, e1000371.CrossRefGoogle ScholarPubMed
Pesce, J. T., Ramalingam, T. R., Wilson, M. S., Mentink-Kane, M. M., Thompson, R. W., Cheever, A. W., Urban, J. F. and Wynn, T. A. (2009 b). Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathogens 5, e1000393.CrossRefGoogle ScholarPubMed
Phillips, C., Coward, W. R., Pritchard, D. I. and Hewitt, C. R. A. (2003). Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. Journal of Leukocyte Biology 73, 165171.CrossRefGoogle ScholarPubMed
Phythian-Adams, A. T., Cook, P. C., Lundie, R. J., Jones, L. H., Smith, K. A., Barr, T. A., Hochweller, K., Anderton, S. M., Hammerling, G. J., Maizels, R. M. and MacDonald, A. S. (2010). CD11c depletion severely disrupts Th2 induction and development in vivo . Journal of Experimental Medicine 207, 20892096.CrossRefGoogle ScholarPubMed
Pinot de Moira, A., Fitzsimmons, C. M., Jones, F. M., Wilson, S., Cahen, P., Tukahebwa, E., Mpairwe, H., Mwatha, J. K., Bethony, J. M., Skov, P. S., Kabatereine, N. B. and Dunne, D. W. (2014). Suppression of basophil histamine release and other IgE-dependent responses in childhood Schistosoma mansoni/hookworm coinfection. Journal of Infectious Diseases 210, 11981206.CrossRefGoogle ScholarPubMed
Prendergast, C. T., Sanin, D. E. and Mountford, A. P. (2016). CD4T-cell hyporesponsiveness induced by schistosome larvae is not dependent upon eosinophils but may involve connective tissue mast cells. Parasite Immunology 38, 8192.CrossRefGoogle Scholar
Price, A. E., Liang, H.-E., Sullivan, B. M., Reinhardt, R. L., Eisley, C. J., Erle, D. J. and Locksley, R. M. (2010). Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proceedings of the National Academy of Sciences of the United States of America 107, 1148911494.CrossRefGoogle ScholarPubMed
Pulendran, B. and Artis, D. (2012). New paradigms in type 2 immunity. Science 337, 431435.CrossRefGoogle ScholarPubMed
Reese, T. A., Liang, H.-E., Tager, A. M., Luster, A. D., van Rooijen, N., Voehringer, D. and Locksley, R. M. (2007). Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 9296.CrossRefGoogle ScholarPubMed
Reynolds, L. A., Filbey, K. J. and Maizels, R. M. (2012). Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus . Seminars in Immunopathology 34, 829846.CrossRefGoogle Scholar
Rivera, A., Siracusa, M. C., Yap, G. S. and Gause, W. C. (2016). Innate cell communication kick-starts pathogen-specific immunity. Nature Immunology 17, 356363.CrossRefGoogle ScholarPubMed
Roediger, B., Kyle, R., Yip, K. H., Sumaria, N., Guy, T. V., Kim, B. S., Mitchell, A. J., Tay, S. S., Jain, R., Forbes-Blom, E., Chen, X., Tong, P. L., Bolton, H. A., Artis, D., Paul, W. E., de St Groth, B. F., Grimbaldeston, M. A., Le Gros, G. and Weninger, W. (2013). Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunology 14, 564573.CrossRefGoogle Scholar
Sakata-Yanagimoto, M., Nakagami-Yamaguchi, E., Saito, T., Kumano, K., Yasutomo, K., Ogawa, S., Kurokawa, M. and Chiba, S. (2008). Coordinated regulation of transcription factors through Notch2 is an important mediator of mast cell fate. Proceedings of the National Academy of Sciences 105, 78397844.CrossRefGoogle ScholarPubMed
Sakata-Yanagimoto, M., Sakai, T., Miyake, Y., Saito, T. I., Maruyama, H., Morishita, Y., Nakagami-Yamaguchi, E., Kumano, K., Yagita, H., Fukayama, M., Ogawa, S., Kurokawa, M., Yasutomo, K. and Chiba, S. (2011). Notch2 signaling is required for proper mast cell distribution and mucosal immunity in the intestine. Blood 117, 128134.CrossRefGoogle ScholarPubMed
Satpathy, A. T., KC, W., Albring, J. C., Edelson, B. T., Kretzer, N. M., Bhattacharya, D., Murphy, T. L. and Murphy, K. M. (2012 a). Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. Journal of Experimental Medicine 209, 11351152.CrossRefGoogle ScholarPubMed
Satpathy, A. T., Wu, X., Albring, J. C. and Murphy, K. M. (2012 b). Re(de)fining the dendritic cell lineage. Nature Immunology 13, 11451154.CrossRefGoogle ScholarPubMed
Schramm, G., Gronow, A., Knobloch, J., Wippersteg, V., Grevelding, C. G., Galle, J., Fuller, H., Stanley, R. G., Chiodini, P. L., Haas, H. and Doenhoff, M. J. (2006). IPSE/alpha-1: a major immunogenic component secreted from Schistosoma mansoni eggs. Molecular and Biochemical Parasitology 147, 919.CrossRefGoogle Scholar
Schwartz, C., Oeser, K., Prazeres da Costa, C., Layland, L. E. and Voehringer, D. (2014 a). T cell-derived IL-4/IL-13 protects mice against fatal Schistosoma mansoni infection independently of basophils. Journal of Immunology (Baltimore, Md: 1950) 193, 35903599.CrossRefGoogle ScholarPubMed
Schwartz, C., Turqueti-Neves, A., Hartmann, S., Yu, P., Nimmerjahn, F. and Voehringer, D. (2014 b). Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proceedings of the National Academy of Sciences 111, E5169E5177.CrossRefGoogle ScholarPubMed
Sharma, M., Stephen-Victor, E., Poncet, P., Kaveri, S. V. and Bayry, J. (2015). Basophils are inept at promoting human Th17 responses. Human Immunology 76, 176180.CrossRefGoogle ScholarPubMed
Sharma, R., Zheng, L., Deshmukh, U. S., Jarjour, W. N., Sung, S.-S. J., Fu, S. M. and Ju, S.-T. (2007). A regulatory T cell-dependent novel function of CD25 (IL-2Ralpha) controlling memory CD8(+) T cell homeostasis. Journal of Immunology (Baltimore, Md: 1950) 178, 12511255.CrossRefGoogle ScholarPubMed
Shen, T., Kim, S., Do, J.-S., Wang, L., Lantz, C., Urban, J. F., Le Gros, G. and Min, B. (2008). T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. International Immunology 20, 12011209.CrossRefGoogle ScholarPubMed
Shih, H.-Y., Sciumè, G., Mikami, Y., Guo, L., Sun, H.-W., Brooks, S. R., Urban, J. F. Jr., Davis, F. P., Kanno, Y. and O'Shea, J. J. (2016). Developmental acquisition of regulomes underlies innate lymphoid cell functionality. Cell 165, 11201133.CrossRefGoogle ScholarPubMed
Siracusa, M. C., Saenz, S. A., Hill, D. A., Kim, B. S., Headley, M. B., Doering, T. A., Wherry, E. J., Jessup, H. K., Siegel, L. A., Kambayashi, T., Dudek, E. C., Kubo, M., Cianferoni, A., Spergel, J. M., Ziegler, S. F., Comeau, M. R. and Artis, D. (2011). TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229233.CrossRefGoogle ScholarPubMed
Siracusa, M. C., Saenz, S. A., Wojno, E. D. T., Kim, B. S., Osborne, L. C., Ziegler, C. G., Benitez, A. J., Ruymann, K. R., Farber, D. L., Sleiman, P. M., Hakonarson, H., Cianferoni, A., Wang, M.-L., Spergel, J. M., Comeau, M. R. and Artis, D. (2013 a). Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity 39, 11581170.CrossRefGoogle ScholarPubMed
Siracusa, M. C., Saenz, S. A., Wojno, E. D. T., Kim, B. S., Osborne, L. C., Ziegler, C. G., Benitez, A. J., Ruymann, K. R., Farber, D. L., Sleiman, P. M., Hakonarson, H., Cianferoni, A., Wang, M.-L., Spergel, J. M., Comeau, M. R. and Artis, D. (2013 b). Thymic stromal Lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity 39, 11581170.CrossRefGoogle ScholarPubMed
Smith, K. A., Harcus, Y., Garbi, N., Hämmerling, G. J., MacDonald, A. S. and Maizels, R. M. (2012). Type 2 innate immunity in helminth infection is induced redundantly and acts autonomously following CD11c(+) cell depletion. Infection and Immunity 80, 34813489.CrossRefGoogle ScholarPubMed
Sokol, C. L., Chu, N.-Q., Yu, S., Nish, S. A., Laufer, T. M. and Medzhitov, R. (2009). Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nature Immunology 10, 713720.CrossRefGoogle ScholarPubMed
Specht, S., Frank, J. K., Alferink, J., Dubben, B., Layland, L. E., Denece, G., Bain, O., Förster, I., Kirschning, C. J., Martin, C. and Hoerauf, A. (2011). CCL17 controls mast cells for the defense against filarial larval entry. Journal of Immunology 186, 48454852.CrossRefGoogle ScholarPubMed
Sullivan, B. M., Liang, H.-E., Bando, J. K., Wu, D., Cheng, L. E., McKerrow, J. K., Allen, C. D. C. and Locksley, R. M. (2011). Genetic analysis of basophil function in vivo . Nature Immunology 12, 527535.CrossRefGoogle ScholarPubMed
Tait Wojno, E. D. and Artis, D. (2016). Emerging concepts and future challenges in innate lymphoid cell biology. Journal of Experimental Medicine 213, 22292248.CrossRefGoogle ScholarPubMed
Tait Wojno, E. D., Monticelli, L. A., Tran, S. V., Alenghat, T., Osborne, L. C., Thome, J. J., Willis, C., Budelsky, A., Farber, D. L. and Artis, D. (2015). The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunology 8, 13131323.CrossRefGoogle Scholar
Tawill, S., Le Goff, L., Ali, F., Blaxter, M. and Allen, J. E. (2004). Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infection and Immunity 72, 398407.CrossRefGoogle ScholarPubMed
Taylor, B. C., Zaph, C., Troy, A. E., Du, Y., Guild, K. J., Comeau, M. R. and Artis, D. (2009). TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. Journal of Experimental Medicine 206, 655667.CrossRefGoogle ScholarPubMed
Thawer, S., Auret, J., Schnoeller, C., Chetty, A., Smith, K., Darby, M., Roberts, L., Mackay, R.-M., Whitwell, H. J., Timms, J. F., Madsen, J., Selkirk, M. E., Brombacher, F., Clark, H. W. and Horsnell, W. G. C. (2016). Surfactant protein-D is essential for immunity to Helminth infection. PLoS Pathogens 12, e1005461.CrossRefGoogle ScholarPubMed
Tjota, M. Y., Williams, J. W., Lu, T., Clay, B. S., Byrd, T., Hrusch, C. L., Decker, D. C., de Araujo, C. A., Bryce, P. J. and Sperling, A. I. (2013). IL-33–dependent induction of allergic lung inflammation by FcγRIII signaling. Journal of Clinical Investigation 123, 22872297.CrossRefGoogle ScholarPubMed
Trottein, F., Pavelka, N., Vizzardelli, C., Angeli, V., Zouain, C. S., Pelizzola, M., Capozzoli, M., Urbano, M., Capron, M., Belardelli, F., Granucci, F. and Ricciardi-Castagnoli, P. (2004). A type I IFN-dependent pathway induced by Schistosoma mansoni eggs in mouse myeloid dendritic cells generates an inflammatory signature. Journal of Immunology (Baltimore, Md: 1950) 172, 30113017.CrossRefGoogle ScholarPubMed
Turner, J.-E., Morrison, P. J., Wilhelm, C., Wilson, M., Ahlfors, H., Renauld, J.-C., Panzer, U., Helmby, H. and Stockinger, B. (2013). IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. Journal of Experimental Medicine 210, 29512965.CrossRefGoogle ScholarPubMed
Tussiwand, R., Everts, B., Grajales-Reyes, G. E., Kretzer, N. M., Iwata, A., Bagaitkar, J., Wu, X., Wong, R., Anderson, D. A., Murphy, T. L., Pearce, E. J. and Murphy, K. M. (2015). Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42, 916928.CrossRefGoogle ScholarPubMed
Van Dyken, S. J., Nussbaum, J. C., Lee, J., Molofsky, A. B., Liang, H.-E., Pollack, J. L., Gate, R. E., Haliburton, G. E., Ye, C. J., Marson, A., Erle, D. J. and Locksley, R. M. (2016). A tissue checkpoint regulates type 2 immunity. Nature Immunology 17, 13811387.CrossRefGoogle ScholarPubMed
van Panhuys, N., Prout, M., Forbes, E., Min, B., Paul, W. E. and Le Gros, G. (2011). Basophils are the major producers of IL-4 during primary helminth infection. Journal of Immunology 186, 27192728.CrossRefGoogle ScholarPubMed
Vély, F., Barlogis, V., Vallentin, B., Neven, B., Piperoglou, C., Ebbo, M., Perchet, T., Petit, M., Yessaad, N., Touzot, F., Bruneau, J., Mahlaoui, N., Zucchini, N., Farnarier, C., Michel, G., Moshous, D., Blanche, S., Dujardin, A., Spits, H., Distler, J. H. W., Ramming, A., Picard, C., Golub, R., Fischer, A. and Vivier, E. (2016). Evidence of innate lymphoid cell redundancy in humans. Nature Immunology 17, 12911299.CrossRefGoogle ScholarPubMed
Voehringer, D. (2013). Protective and pathological roles of mast cells and basophils. Nature Reviews Immunology 13, 362375.CrossRefGoogle ScholarPubMed
Voehringer, D., Reese, T. A., Huang, X., Shinkai, K. and Locksley, R. M. (2006). Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. Journal of Experimental Medicine 203, 14351446.CrossRefGoogle ScholarPubMed
von Moltke, J., Ji, M., Liang, H.-E. and Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221225.CrossRefGoogle ScholarPubMed
Wang, Y.-H., Ito, T., Wang, Y.-H., Homey, B., Watanabe, N., Martin, R., Barnes, C. J., McIntyre, B. W., Gilliet, M., Kumar, R., Yao, Z. and Liu, Y.-J. (2006). Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 24, 827838.CrossRefGoogle ScholarPubMed
Wilhelm, C., Harrison, O. J., Schmitt, V., Pelletier, M., Spencer, S. P., Urban, J. F. Jr., Ploch, M., Ramalingam, T. R., Siegel, R. M. and Belkaid, Y. (2016). Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. Journal of Experimental Medicine 213, 14091418.CrossRefGoogle ScholarPubMed
Williams, J. W., Tjota, M. Y., Clay, B. S., Vander Lugt, B., Bandukwala, H. S., Hrusch, C. L., Decker, D. C., Blaine, K. M., Fixsen, B. R., Singh, H., Sciammas, R. and Sperling, A. I. (2013). Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nature Communications 4, 2990.CrossRefGoogle ScholarPubMed
Wills-Karp, M., Rani, R., Dienger, K., Lewkowich, I., Fox, J. G., Perkins, C., Lewis, L., Finkelman, F. D., Smith, D. E., Bryce, P. J., Kurt-Jones, E. A., Wang, T. C., Sivaprasad, U., Hershey, G. K. and Herbert, D. R. (2012). Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. Journal of Experimental Medicine 209, 607622.CrossRefGoogle ScholarPubMed
Xue, L., Salimi, M., Panse, I., Mjösberg, J. M., McKenzie, A. N. J., Spits, H., Klenerman, P. and Ogg, G. (2014). Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. Journal of Allergy and Clinical Immunology 133, 11841194.CrossRefGoogle ScholarPubMed
Yoshimoto, T., Tsutsui, H., Tominaga, K., Hoshino, K., Okamura, H., Akira, S., Paul, W. E. and Nakanishi, K. (1999). IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proceedings of the National Academy of Sciences 96, 1396213966.CrossRefGoogle ScholarPubMed
Zhang, K., Xu, X., Asghar Pasha, M., Siebel, C. W., Costello, A., Haczku, A., MacNamara, K., Liang, T., Zhu, J., Bhandoola, A., Maillard, I. and Yang, Q. (2017). Cutting edge: notch signaling promotes the plasticity of group-2 innate lymphoid cells. Journal of Immunology (Baltimore, Md: 1950) 198, 17981803.CrossRefGoogle ScholarPubMed
Zook, E. C., Ramirez, K., Guo, X., van der Voort, G., Sigvardsson, M., Svensson, E. C., Fu, Y.-X. and Kee, B. L. (2016). The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. Journal of Experimental Medicine 213, 687696.CrossRefGoogle ScholarPubMed