Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T15:14:55.727Z Has data issue: false hasContentIssue false

Direct numerical simulations of compressible turbulent channel flows with asymmetric thermal walls

Published online by Cambridge University Press:  03 April 2024

Peng Zhang
Affiliation:
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, PR China
Yubin Song
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Zhenhua Xia*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
*
Email address for correspondence: xiazh1006@163.com

Abstract

This paper extends the work of Tamano & Morinishi (J. Fluid Mech., vol. 548, 2006, pp. 361–373) by simulating supersonic turbulent channel flow with asymmetric thermal walls using a larger computational domain and a finer mesh. Direct numerical simulation is carried out for four cases with different thermal wall boundaries at the top wall at fixed $Ma=1.5$, $Re=6000$ and $Pr=0.72$, while the bottom wall is maintained at a constant temperature of $T_L$ equal to the reference temperature. These cases are referred to as the adiabatic case TAd, where the top wall is adiabatic; the pseudo-adiabatic case T32, where the top wall is isothermal with temperature $T_{w,t}=T_A$; the sub-adiabatic case T25, with $T_{w,t}=0.77T_A$; and the super-adiabatic case T40, with $T_{w,t}=1.24T_A$. Here, $T_A=3.234$ is the mean temperature at the adiabatic wall in the TAd case. The objective of this study is to compare and contrast the TAd case with its corresponding T32 case, and to investigate the effect of the wall temperature difference between the two isothermal walls. Comparisons of the basic turbulent statistics, the heat transfer between the Favre-averaged mean-flow kinetic energy, the Favre-averaged turbulent kinetic energy and the Favre-averaged mean internal energy, as well as the wall heat transfer properties, indicate that the TAd case and its corresponding T32 case are generally equivalent. The only discernible difference is in the region very close to the top wall for the temperature-fluctuation-related quantities. The analysis reveals that the asymmetry of the thermal walls causes asymmetry in the flow and thermal fields. In addition, the transfer of the heat generated by the pressure dilatation and the viscous stress is facilitated by the turbulent heat flux term and the mean molecular heat flux term.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avellaneda, J.M., Bataille, F. & Toutant, A. 2019 DNS of turbulent low Mach channel flow under asymmetric high temperature gradient: effect of thermal boundary condition on turbulence statistics. Intl J. Heat Fluid Flow 77, 4047.CrossRefGoogle Scholar
Avellaneda, J.M., Bataille, F., Toutant, A. & Flamant, G. 2021 DNS of entropy generation rates for turbulent flows subjected to high temperature gradients. Intl J. Heat Mass Transfer 176, 121463.CrossRefGoogle Scholar
Baranwal, A., Donzis, D.A. & Bowersox, R.D.W. 2022 Asymptotic behaviour at the wall in compressible turbulent channels. J. Fluid Mech. 933, A28.CrossRefGoogle Scholar
Baranwal, A., Donzis, D.A. & Bowersox, R.D.W. 2023 Turbulent heat flux in supersonic flows for different thermal boundary conditions. In AIAA SciTech 2023 Forum, paper no. 2023-0868. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9 (1), 3352.CrossRefGoogle Scholar
Chen, X.P. & Fei, F. 2018 Effects of dimensional wall temperature on Reynolds stress budgets in a supersonic turbulent channel flow with thermally perfect gas. Intl J. Comput. Fluid Dyn. 32, 315325.CrossRefGoogle Scholar
Cheng, C. & Fu, L. 2023 Linear-model-based study of the coupling between velocity and temperature fields in compressible turbulent channel flows. J. Fluid Mech. 964, A15.CrossRefGoogle Scholar
Cheng, C., Shyy, W. & Fu, L. 2023 Momentum and heat flux events in compressible turbulent channel flows. Phys. Rev. Fluids 8, 094602.CrossRefGoogle Scholar
Coleman, G.N., Kim, J. & Moser, R.D. 1995 Numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305 (305), 159183.CrossRefGoogle Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.CrossRefGoogle Scholar
Gatski, T. & Bonnet, J. 2013 Compressibility, Turbulence and High Speed Flow. Academic Press.Google Scholar
Gerolymos, G.A. & Vallet, I. 2023 Scaling of pressure fluctuations in compressible turbulent plane channel flow. J. Fluid Mech. 958, A19.CrossRefGoogle Scholar
Gerolymos, G.A. & Vallet, I. 2024 Total and static temperature statistics in compressible turbulent plane channel flow. J. Fluid Mech. 978, A25.CrossRefGoogle Scholar
Ghosh, S., Foysi, H. & Friedrich, R. 2010 Compressible turbulent channel and pipe flow: similarities and differences. J. Fluid Mech. 648, 155181.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118 (34), e2111144118.CrossRefGoogle ScholarPubMed
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2023 Incorporating intrinsic compressibility effects in velocity transformations for wall-bounded turbulent flows. Phys. Rev. Fluids 8, L112601.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N., Spalart, P.R. & Yang, X.I.A. 2023 Velocity and temperature scalings leading to compressible laws of the wall. J. Fluid Mech. 977, A49.CrossRefGoogle Scholar
Lessani, B. & Papalexandris, M.V. 2008 Numerical study of turbulent channel flow with strong temperature gradients. Intl J. Numer. Meth. Heat Fluid Flow 18 (3–4), 545556.CrossRefGoogle Scholar
Li, W.P., Fan, Y.T., Modesti, D. & Cheng, C. 2019 a Decomposition of the mean skin-friction drag in compressible turbulent channel flows. J. Fluid Mech. 875, 101123.CrossRefGoogle Scholar
Li, X., Tong, F.-L., Yu, C.-P. & Li, X.-L. 2019 b Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer. Phys. Fluids 31 (10), 106101.CrossRefGoogle Scholar
Liang, X. & Li, X.L. 2015 Direct numerical simulation on Mach number and wall temperature effects in the turbulent flows of flat-plate boundary layer. Commun. Comput. Phys. 17 (1), 189212.CrossRefGoogle Scholar
Lusher, D.J. & Coleman, G.N. 2022 a Numerical study of compressible wall-bounded turbulence – the effect of thermal wall conditions on the turbulent Prandtl number in the low-supersonic regime. Intl J. Comput. Fluid Dyn. 36 (9), 797815.CrossRefGoogle Scholar
Lusher, D.J. & Coleman, G.N. 2022 b Numerical study of the turbulent Prandtl number in supersonic plane-channel flow – the effect of thermal boundary conditions. NASA Tech. Rep. NASA/TM-20220010483.Google Scholar
Ma, P.C., Yang, X.I.A. & Ihme, M. 2018 Structure of wall-bounded flows at transcritical conditions. Phys. Rev. Fluids 3, 034609.CrossRefGoogle Scholar
Mittal, A. & Girimaji, S.S. 2019 Mathematical framework for analysis of internal energy dynamics and spectral distribution in compressible turbulent flows. Phys. Rev. Fluids 4, 042601(R).CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.CrossRefGoogle Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2003 A DNS algorithm using B-spline collocation method for compressible turbulent channel flow. Comput. Fluids 32 (5), 751776.CrossRefGoogle Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.CrossRefGoogle Scholar
Morkovin, M. 1962 Effects of Compressibility on Turbulent Flows. Centre National de la Recherche Scientifique.Google Scholar
Moser, R., Kim, J. & Mansour, N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_{\tau }=590$. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Nagata, M. & Nagaoka, M. 2017 Effects of strong temperature gradient on a compressible turbulent channel flow. In Proceedings of the 10th International Symposium on Turbulence and Shear Flow Phenomena, paper no. P-12.Google Scholar
Serra, S., Toutant, A., Bataille, F. & Zhou, Y. 2012 High-temperature gradient effect on a turbulent channel flow using thermal large-eddy simulation in physical and spectral spaces. J. Turbul. 13 (49), N49.CrossRefGoogle Scholar
Shadloo, M.S., Hadjadj, A. & Hussain, F. 2015 Statistical behavior of supersonic turbulent boundary layers with heat transfer at $M_{\infty }=2$. Intl J. Heat Fluid Flow 53, 113134.CrossRefGoogle Scholar
Song, Y.B., Zhang, P., Liu, Y.L. & Xia, Z.H. 2022 Central mean temperature scaling in compressible turbulent channel flows with symmetric isothermal boundaries. Phys. Rev. Fluids 7, 044606.CrossRefGoogle Scholar
Song, Y.B., Zhang, P. & Xia, Z.H. 2023 Predicting mean profiles in compressible turbulent channel and pipe flows. Phys. Rev. Fluids 8, 034604.CrossRefGoogle Scholar
Spina, E.F., Smits, A. & Robinson, S.K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287319.CrossRefGoogle Scholar
Sun, D., Guo, Q.L., Yuan, X.X., Zhang, H.Y., Li, C. & Liu, P.X. 2021 A decomposition formula for the wall heat flux of a compressible boundary layer. Adv. Aerodyn. 3, 33.CrossRefGoogle Scholar
Tamano, S. & Morinishi, Y. 2006 Effect of different thermal wall boundary conditions on compressible turbulent channel flow at $M = 1.5$. J. Fluid Mech. 548, 361373.CrossRefGoogle Scholar
Tang, J., Zhao, Z., Wan, Z.H. & Liu, N.S. 2020 On the near-wall structures and statistics of fluctuating pressure in compressible turbulent channel flows. Phys. Fluids 32 (11), 115121.CrossRefGoogle Scholar
Toki, T., Teramoto, S. & Okamoto, K. 2020 Velocity and temperature profiles in turbulent channel flow at supercritical pressure. J. Propul. Power 36 (1), 313.CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.CrossRefGoogle Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.CrossRefGoogle Scholar
Wang, W.P. & Pletcher, R.H. 1996 On the large eddy simulation of a turbulent channel flow with significant heat transfer. Phys. Fluids 8 (12), 33543366.CrossRefGoogle Scholar
Wei, L. & Pollard, A. 2011 Interactions among pressure, density, vorticity and their gradients in compressible turbulent channel flows. J. Fluid Mech. 673, 118.CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar
Xu, D.H., Wang, J.C. & Chen, S.Y. 2022 Skin-friction and heat-transfer decompositions in hypersonic transitional and turbulent boundary layers. J. Fluid Mech. 941, A4.CrossRefGoogle Scholar
Xu, D.H., Wang, J.C., Wan, M.P., Yu, C.P., Li, X.L. & Chen, S.Y. 2021 Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer. J. Fluid Mech. 929, A33.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 Turbulence statistics and coherent structures in compressible channel flow. Phys. Rev. Fluids 5, 084603.CrossRefGoogle Scholar
Yu, M., Xu, C.X. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4, 123402.CrossRefGoogle Scholar
Zhang, P., Song, Y.B., Liu, Y.L. & Xia, Z.H. 2022 Equivalence of three thermal boundary conditions in compressible turbulent channel flows. Phys. Rev. E 105 (14), 065106.CrossRefGoogle ScholarPubMed
Zhang, P., Song, Y.B. & Xia, Z.H. 2021 Exact mathematical formulas for wall-heat flux in compressible turbulent channel flows. Acta Mech. Sin. 38, 321403.CrossRefGoogle Scholar
Zhang, P. & Xia, Z.H. 2020 Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows. Phys. Rev. E 102 (8), 043107.CrossRefGoogle ScholarPubMed
Zhang, Y.S., Bi, W.T., Hussain, F. & She, Z.S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar