Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T11:46:55.256Z Has data issue: false hasContentIssue false

Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106

Published online by Cambridge University Press:  28 March 2006

E. Achenbach
Affiliation:
Institut für Reaktorbauelemente, KFA-Jülich, Germany

Abstract

In a large range of Reynolds numbers, 6 × 104 < Re < 5 × 106, the flow around single cylinders with smooth surfaces has been investigated. The high values of the Reynolds numbers were obtained in a test channel which could be pressurized up to 40 bar of static pressure. New experiments were performed to measure the local pressure and skin friction distribution around the cylinder. From these results the total drag, the pressure drag and the friction drag were calculated. By means of the skin friction distribution the position of the separation points, separation bubbles or transition points can be localized. These data allow one to define three states of the flow: the subcritical flow, where the boundary layer separates laminarly; the critical flow, in which a separation bubble, followed by a turbulent reattachment, occurs; and the supercritical flow, where an immediate transition from the laminar to the turbulent boundary layer is observed at a critical distance from the stagnation point. According to the total drag coefficient the values found in this paper connect the subcritical region represented by the measurements of Wieselsberger (1923) and Fage & Warsap (1930) with the supercritical range in which Roshko (1961) carried out his experiments.

Type
Research Article
Copyright
© 1968 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw, P. & Gregory, N. 1959 The determination of local turbulent skin friction from observations in the viscous sub-layer. Aero. Res. Counc. Lond. R. & M. no. 3202.Google Scholar
Fage, A. & Falkner, V. M. 1931 Further experiments on the flow around a circular cylinder. Aero. Res. Counc. Lond. R. & M. no. 1369.Google Scholar
Fage, A. & Preston, J. H. 1941 On transition from laminar to turbulent flow in the boundary layer. Proc. Roy. Soc A 178, 20127.Google Scholar
Fage, A. & Warsap, J. H. 1930 The effect of turbulence and surface roughness on the drag of a circular cylinder. Aero. Res. Counc. Lond. R. & M. no. 1283.Google Scholar
Giedt, W. H. 1951 Effects of turbulence level of incident airstream on local heat transfer and skin friction on a cylinder J. Aero. Sci. 8, 72530.Google Scholar
Grosse, H. & Scholz, F. 1965 Der Hochdruck-Gaskanal. Kerntechnik, Heft 4. München: Thiemig.
Konstantinov, N. I. & Dragnysh, G. L. 1955 The measurement of friction stress on a surface. D.S.I.R. RTS 1499 (1960).Google Scholar
Kraemer, K. 1961 Über die Wirkung von Stolperdrähten auf den Grenzschichtumschlag Z. Flugwiss, 9, 207.Google Scholar
Morsbach, M. 1967 Über die Bedingungen für eine Wirbelstraßenbildung hinter Kreiszylindern. Dissertation T. H. Aachen (1967).
Rechenberg, I. 1962 Zur Messung der turbulenten Wandreibung mit dem Prestonrohr. Jahrbuch der Wissenschaftlichen Gesellschaft für Luft- und Raum-fahrt e.V. (WGLR), 1519.Google Scholar
Rechenberg, I. 1963 Messung der turbulenten Wandschubspannung Z. Flugwiss, 11, 42938.Google Scholar
Roshko, A. 1961 Experiments of the flow past a circular cylinder at very high Reynolds number J. Fluid Mech. 10, 34556.Google Scholar
Schiller, L. & Linke, W. 1933 Druck- und Reibungswiderstand eines Zylinders bei Reynolds' schen Zahlen 5000 bis 40000. Z. Flugtech. Motorluftschiff. 24, Heft 7, 1938.Google Scholar
Schlichting, H. 1955 Boundary layer theory. Oxford: Pergamon.
Thom, A. 1929 An investigation of fluid flow in two dimensions. Aero. Res. Counc. Lond. R. & M. no. 1194.Google Scholar
Wieselsberger, C. 1923 Versuche über den Widerstand gerundeter und kantiger Körper. Ergebnisse AVA Göttingen II Lieferung (1923).Google Scholar
Supplementary material: PDF

Achenbach supplementary material

Supplementary Tables S1-S3

Download Achenbach supplementary material(PDF)
PDF 2.4 MB