Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T15:59:19.095Z Has data issue: false hasContentIssue false

On stagnation-point conditions in non-equilibrium inviscid blunt-body flows

Published online by Cambridge University Press:  29 March 2006

Marcel Vinokur
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, California

Abstract

In non-equilibrium inviscid blunt-body flows, the state of the gas at the stagnation point is known to be in thermodynamic equilibrium for all finite relaxation times. The dependence of this state on the non-equilibrium processes and body geometry is investigated for the most general conditions. The stagnation-point state is always found to be in a narrow range bounded on one side by the state obtained in an equilibrium flow. The other bound, called the frozen limit, is far removed from the state obtained in an identically frozen flow (infinite relaxation times). For certain state variables, the frozen-limit value lies outside the range determined by frozen and equilibrium flow. Significant errors are found in several published predictions of the stagnation-point state, resulting from the non-analytic approach to equilibrium in nearly frozen flow.

The two bounds on the pressure are expressible in terms of the normal shock density ratios for equilibrium and frozen flow. The actual pressure for an arbitrary flow situation is found to depend only on the shock nose radius and the relation between density and time in the relaxation zone behind a normal shock wave. If the density law is given by a single relaxation model, a closed form expression for the pressure is obtained. The analysis is carried out for both plane and axisymmetric flows, and is also valid for non-equilibrium free-stream conditions.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisimov, S. I. & Khodyko, Yu. V. 1964 Soviet Physics-Technical Physics (Zh. Tekhn. Fiz.), 8, 993.
Belotserkovskii, O. M. 1966 Supersonic Gas Flow Around Blunt Bodies (Theoretical and Experimental Investigations). Vychislitel'nyi Tsentr Akad. Nauk SSSR, Moscow. NASA Tech. Transl. no. F-453 (1967).Google Scholar
Belotserkovskii, O. M. & Dushin, V. K. 1964 Zh. Vych. Mat. i Matem. Fiz. 4, 61. Transl. in U.S.S.R. Comput. Math. and Math. Phys. 4, no. 1, 83.
Blythe, P. A. 1963 Aero. Quart. 14, 35.
Chisnell, R. F. 1966 AIAA J. 4, 184.
Conti, R. J. 1964 AIAA J. 2, 204.
Conti, R. J. 1966 J. Fluid Mech. 24, 6.
Conti, R. J. & Van Dyke, M. D. 1966 Abstracts of Papers, 1966 Divisional Meeting of the Division of Fluid Dynamics, American Physical Society.
Conti, R. J. & Van Dyke, M. 1969a J. Fluid Mech. 35, 79.
Conti, R. J. & Van Dyke, M. 1969b J. Fluid Mech. 38, 51.
Dushin, V. K. & Lun'kin, Yu. P. 1966 Soviet Physics — Technical Physics (Zh. Tekhn. Fiz.), 10, 1133.
Emanuel, G. 1963 Arnold Engr. Devel. Center, AEDC-TDR-6382.
Freeman, N. C. 1958 J. Fluid Mech. 4, 40.
Gibson, W. E. & Marrone, P. V. 1962a Phys. Fluids, 5, 1649.
Gibson, W. E. & Marrone, P. V. 1962b AGARD N.A.T.O. Specialists Meeting on High Temperature Aspects of Hypersonic Flow, Brussels (Preprint only).
Gibson, W. E. & Marrone, P. V. 1962c Cornell Aero. Lab. Rep. no. QM-1626-A-8.
Gilinskiy, S. M., Telenin, G. F. & Tinyakov, G. P. 1964 Izv. Akad. Nauk SSR., Mech. i Mashinostr, no. 4, 9. NASA Tech. Transl. no. F-297 (1965).
Hayes, D. H. & Probstein, R. F. 1966 Hypersonic Flow Theory, vol. I. New York: Academic.
Hermann, R. 1965 Univ. of Alabama Res. Inst. Rep. no. 30.
Lick, W. 1960 J. Fluid Mech. 7, 12.
Lun'Kin, Yu. P. & Popov, F. D. 1964 Zh. Vych. Mat. i Matem. Fiz. 4, 896. Transl. in U.S.S.R. Comput. Math and Math. Phys. 4, no. 5, 145.
Lun'Kin, Yu. P. & Popov, F. D. 1966 Soviet Physics—Technical Physics (Zh. Tekhn. Fiz.), 11, 491.
Lun'Kin, Yu. P. & Shtengel, M. P. 1964 Politekh. Inst. Trudy Leningrad, 230, 7. Transl. as Tech. Rep. no. FTD-TT-65-649/1 + 2 + 4, Wright-Patterson Air Force Base, Ohio (1965).
Moeckel, W. E. & Weston, K. C. 1958 NASA TN 4265.
Murzinov, I. N. 1961 Izv. Akad. Nauk SSSR, Mekh. i Mashinostr. no. 6, 33. Transl. as Tech. Rep. no. FTD-TT-62-1313-1 + 2 + 4, Wright-Patterson Air Force Base, Ohio (1962).
Saiapin, G. N. 1966 Izv. AN SSR, Mekh. Zhidk. i Gaza, no. 6, 115. Transl. by M. D. Friedman, available from Center for Scientific and Technical Information, Dept. of Comm., Springfield, Virginia.
Sanders, R. W. 1958 Lockheed Missiles and Space Company Rep. no. IAD-351.
Shih, W. C. L. & Baron, J. R. 1964 AIAA J. 2, 106.
Stulov, V. P. & Telenin, G. F. 1965 Izv. AN SSSR, Otd. Tekhn. Nauk, Mekhanika, no. 1, 3. Transl. by M. D. Friedman, available from Center for Scientific and Technical Information, Dept. of Comm., Springfield, Virginia.
Stulov, V. P. & Turchak, L. I. 1966 Izv. AN SSSR, Mekh, Zhidk. i Gaza, no. 5, 3. Transl. by M. D. Friedman, available from Center for Scientific and Technical Information, Dept. of Comm., Springfield, Virginia.
Swigart, R. J. 1963 AIAA J. 1, 103.
Ustinov, M. D. 1960 Inzh. sborn. 29, 11.
Vincenti, W. G. & Kruger, C. H. 1965 Introduction of Physical Gas Dynamics. New York: Wiley.
Wegener, P. P. & Buzyna, G. 1969 J. Fluid Mech. 37, 32.