Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T08:25:22.371Z Has data issue: false hasContentIssue false

Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder

Published online by Cambridge University Press:  21 April 2006

A. Kourta
Affiliation:
Institut de Mecanique des Fluides de Toulouse, Laboratoire associé au C.N.R.S. LA 0005, 2, rue Charles Camichel, 31071 Toulouse, France
H. C. Boisson
Affiliation:
Institut de Mecanique des Fluides de Toulouse, Laboratoire associé au C.N.R.S. LA 0005, 2, rue Charles Camichel, 31071 Toulouse, France
P. Chassaing
Affiliation:
Institut de Mecanique des Fluides de Toulouse, Laboratoire associé au C.N.R.S. LA 0005, 2, rue Charles Camichel, 31071 Toulouse, France
H. Ha Minh
Affiliation:
Institut de Mecanique des Fluides de Toulouse, Laboratoire associé au C.N.R.S. LA 0005, 2, rue Charles Camichel, 31071 Toulouse, France

Abstract

The transition and the development of turbulence in the near wake of a circular cylinder are investigated using hot-wire anemometry and flow visualization. The formation zone of the large regular vortices is studied in the subcritical regime (2000 < U0D/v < 60000). with and without the introduction of a splitter plate. Two different regimes are identified in the interaction between the von Kármán vortices and those of the shear layer emerging from the separated boundary layer. Experimental evidence is given in support of the strong coupling at low Reynolds numbers characterized by phase modulations between the two types of structures. The interaction is weaker at high Reynolds numbers where the small-scale vortices are disconnected from the regular vortex shedding, giving rise to an intermittent pattern. Spectral properties are used to describe the different stages of the interaction between the shear-layer vortices and the alternating ones. Physical properties of the interaction are examined separately in a numerical simulation using a pressure-velocity formulation. Both unexcited and excited two-dimensional plane mixing layers are studied using streakline maps and time traces of the dynamical properties. The main features of the simulated vortex development are in agreement with the experimental results.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apelt, C. J., West, G. S. & Szewczyk, A. A. 1973 J. Fluid Mech. 61, 187.
Bearman, P. W. 1965 J. Fluid Mech. 21, 241.
Bloor, M. S. 1964 J. Fluid Mech. 19, 290.
Bloor, M. S. & Gerrard, J. H. 1966 Proc. R. Soc. Lond. A 294, 319.
Boisson, H. C. 1982 Développement de structures organisées turbulentes à travers l'exemple d'un cylindre circulaire. Thèse de Docteur ès-Sciences, I.N.P. Toulouse.
Boisson, H. C., Chassaing, P. & Ha Minh, H. 1983 Phys. Fluids 26, 653.
Boisson, H. C., Chassaing, P., Ha Minh, H. & Sevrain, A. 1981 In Unsteady Turbulent Shear Flows (ed. R. Michel, J. Cousteix & R. Houdeville), p. 262. Springer.
Braza, M. 1981 Simulation numérique du décollement instationnaire externe par une formulation vitesse-pression. Application à l’écoulement autour d'un cylindre. Thèse de Docteur-Ingénieur, I.N.P. Toulouse.
Braza, M., Chassaing, P. & Ha Minh, H. 1986 J. Fluid Mech. 165, 79.
Busse, F. H. 1981 Hydrodynamics Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub). Topics in Applied Physics. vol. 45, p. 96. Springer.
Cantwell, B. J. 1976 A flying hot-wire study of the turbulent mean wake of a circular cylinder at a Reynolds number 140000. Ph.D. Thesis, Caltech.
Crausse, E. 1936 Contribution expérimentale à l’étude de phénomènes transitoires et périodiques se produisant dans les lignes en mouvement. Thése de Docteur ès-Sciences. Université de Toulouse.
Di Prima, R. C. & Swinney, H. L. 1981 Hydrodynamics Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub). Topics in Applied Physics, vol. 45, p. 139. Springer.
Domptail, C. 1979 Sillages turbulents en aval d'un ou de deux barreaux paralleles en tunnel hydrodynamique: visualisation et vélocimetrie laser. Thèse de 3e cycle, Université d'Aix-Marseille II.
Eckmann, J.-P. 1981 Rev. Med. Phys. 53, 643.
Freymuth, P. 1966 J. Fluid Mech. 25, 683.
Gerrard, J. H. 1966 J. Fluid Mech. 25, 401.
Gerrard, J. H. 1967 Phys. Fluids Suppl. 10, S98.
Gerrard, J. H. 1978 Phil. Trans. R. Soc. Lond. A 288, 351.
Ho, C. M. & Huang, L. S. 1982 J. Fluid Mech. 119, 443.
Ho, C. M. & Huerre, P. 1984 Ann. Rev. Fluid Mech 16, 365.
Jones, G. S., Barbi, C. & Telions, P. 1981 Unsteady turbulent shear flows (ed. R. Michel, J. Cousteix & R. Houdeville), p. 228. Springer.
Kourta, A. 1984 Analyse physique et simulation numérique des structures tourbillonnaires du sillage proche d'un cylindre circulaire. Thése de Docteur-Ingénieur, I.N.P. Toulouse.
Kourta, A., Boisson, H. C., Braza, M., Chassaing, P. & Ha Minh, H. 1985a Fifth Symp. on Turbulent Shear Flows. Cornell University, Ithaca, New York, USA, p. 3.39.
Kourta, A., Boisson, H. C., Chassaing, P. & Ha Minh, H. 1985b Intl J. Phys.-Chem. Hydrodyn. 6, 703.
Kovasznay, L. S. G. 1959 J. Fluid Mech. 6, 357.
Liepmann, H. W. & Laufer, J. 1947 NACA Tech. Note 1257.
Maekawa, T. & Mizuno, S. 1967 Phys. Fluids Suppl. 10, S184.
Miksad, R. W., Jones, F. L., Powers, E. J., Kim, Y. C. & Khadra, L. 1982 J. Fluid Mech. 123, 1.
Motohashi, T. 1979 Phys. Fluids 22, 1212.
Newhouse, S., Ruelle, D. & Takens, F. 1978 Communs Math. Phys. 64. 35.
Owen, F. K. & Johnson, D. A. 1980 AIAAJ. 18, 1173.
Roshko, A. 1954 NACA Rep. 1191.
Roshko, A. 1955 J. Aero. Sci. 22, 124.
Sirovich, L. 1985 Phys. Fluids 28, 2723.
Sreenivasan, K. R. 1985 In Frontiers in Fluid Mechanics (ed. S. H. Davis & J. L. Lumley), p. 41. Springer.
Stansby, P. K. 1974 Aeronaut. J. 78, 36.
Wei, T. & Smith, C. R. 1986 J. Fluid Mech. 169, 513.
West, G. S. & Apelt, C. J. 1982 J. Fluid Mech. 114, 361.
Wlezien, R. W. & Way, J. L. 1979 AIAAJ. 17, 563.