Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T21:37:12.423Z Has data issue: false hasContentIssue false

Neogene occurrences of the marine acritarch genus Nannobarbophora Habib and Knapp, 1982 emend., and the new species N. Gedlii

Published online by Cambridge University Press:  20 May 2016

Martin J. Head*
Affiliation:
Godwin Institute for Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom,

Extract

The stratigraphic utility of small marine acritarchs in the Neogene has been known for more than a decade (e.g., de Vernal and Mudie, 1989). Their potential for biostratigraphy in the Cretaceous is also well known, and was elegantly elucidated by Habib and Knapp (1982) in a detailed scanning electron microscope (SEM) study from the western North Atlantic. Habib and Knapp erected 12 new acritarch genera including the acanthomorph genus Nannobarbophora and its three species N. barbata (the name of the type), N. pistilla, and N. platforma. A diagnostic feature of Nannobarbophora is the presence of spinules concentrated on, or restricted to, the surface of distally closed processes. Excystment is by a simple linear split (Habib and Knapp, 1982, p. 347).

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Vernal, A., and Mudie, P. J. 1989. Pliocene and Pleistocene palynostratigraphy at ODP Sites 646 and 647, eastern and southern Labrador Sea, p. 401422. In Srivastava, S. P., Arthur, M., Clement, B. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. National Academy of Sciences, Washington, Proceedings, 49:158164.CrossRefGoogle Scholar
Gedl, P. 1996. Middle Miocene dinoflagellate cysts from the Korytnica Clays (Góry Swietokrzyskie Mountains, Poland). Annales Societatis Geologorum Poloniae, 66:191218. [published after July, 1996].Google Scholar
Habib, D., and Knapp, S. D. 1982. Stratigraphic utility of Cretaceous small acritarchs. Micropaleontology, 28:335371.CrossRefGoogle Scholar
Head, M. J. 1993. Dinoflagellate cysts, sporomorphs, and other palynomorphs from the upper Pliocene St. Erth Beds of Cornwall, southwestern England. Paleontological Society Memoir 31 (Journal of Paleontology, 67[3]Supplement), 62 p.CrossRefGoogle Scholar
Head, M. J. 1994. Morphology and paleoenvironmental significance of the Cenozoic dinoflagellate genera Habibacysta and Tectatodinium . Micropaleontology, 40:289321.CrossRefGoogle Scholar
Head, M. J. 1996. Paleoecological and taxonomic revision of late Cenozoic dinoflagellates from the Royal Society borehole at Ludham, eastern England. Journal of Paleontology, 70:543570. [published July, 1996.]CrossRefGoogle Scholar
Head, M. J. 1998. Marine environmental change in the Pliocene and early Pleistocene of eastern England: the dinoflagellate evidence reviewed. In Van Kolfschoten, T. and Gibbard, P. (eds.), The Dawn of the Quaternary. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60:199225.Google Scholar
Head, M. J., and Westphal, H. 1999. Palynology and paleoenvironments of a Pliocene carbonate platform: the Clino Core, Bahamas. Journal of Paleontology, 73:125.CrossRefGoogle Scholar
Lister, T. R. 1970. The acritarchs and chitinozoa from the Wenlock and Ludlow Series of the Ludlow and Millichope areas, Shropshire. Palaeontographical Society Monographs, 124(1):1100.Google Scholar
Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K., and Scholze, A. 1989. Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104), p. 611662. In Eldholm, O., Thiede, J., Taylor, E., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 104. Ocean Drilling Program, College Station, Texas.Google Scholar
Mudie, P. J. 1989. Palynology and dinocyst biostratigraphy of the late Miocene to Pleistocene, Norwegian Sea ODP Leg 104, Sites 642 to 644, p. 587610. In Eldholm, O., Thiede, J., Taylor, E., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 104. Ocean Drilling Program, College Station, Texas.Google Scholar
Versteegh, G. J. M. 1994. Recognition of cyclic and non-cyclic environmental changes in the Mediterranean Pliocene: a palynological approach. Marine Micropaleontology, 23:147183.CrossRefGoogle Scholar
Versteegh, G. J. M. 1995. Palaeoenvironmental changes in the Mediterranean and North Atlantic in relation to the onset of northern hemisphere glaciations (2.5 Ma B.P.)—a palynological approach. Published doctoral dissertation; CIP Gegevens Koninklijke Bibliotheek, Den Haag, 134 p.Google Scholar
Versteegh, G. J. M., and Zonneveld, K. A. F. 1994. Determination of (palaeo-)ecological preferences of dinoflagellates by applying detrended and canonical correspondence analysis to Late Pliocene dinoflagellate cyst assemblages of the south Italian Singa section. Review of Palaeobotany and Palynology, 84:181199.CrossRefGoogle Scholar
Warny, S. A., and Wrenn, J. H. 1997. New species of dinoflagellate cysts from the Bou Regreg Core: a Miocene–Pliocene boundary section on the Atlantic Coast of Morocco. Review of Palaeobotany and Palynology, 96:281304.CrossRefGoogle Scholar