Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T15:06:44.914Z Has data issue: false hasContentIssue false

New ediacaran rangeomorphs from Mistaken Point, Newfoundland, Canada

Published online by Cambridge University Press:  14 July 2015

Emily L. Bamforth
Affiliation:
Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario, Canada K7L 3N6,
Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario, Canada K7L 3N6,

Abstract

Hapsidophyllas flexibilis new genus and species and Frondophyllas grandis new genus and species are rare Ediacaran (ca. 565 Ma) rangeomorph forms, herein termed “hapsidophyllids,” which are endemic to Mistaken Point, Newfoundland, Canada. These two taxa are highly disparate in overall morphology, the former being a low-level, multibranched “network of leaves” and the latter a meter-long frond. Despite their dissimilarity in gross morphology, the two genera share a unique flexible, leaflet-type structure with a fine-scale branching structure that resembles that of charnid rangeomorphs. These leaflet structures are unknown from any other rangeomorph or Ediacaran group, and are herein termed “hapsidophyllid leaflets.” Hapsidophyllids grew by an iteration of structural units, with small rangeomorph modules making up the larger hapsidophyllid leaflets, which in turn composed the larger hapsidophyllid organism. The presence of hapsidophyllid leaflets in both Hapsidophyllas and Frondophyllas suggest the two genera were related taxonomically, with their very different gross morphologies reflecting ecological adaptations to exploit different suspension-feeding tiers.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. M. and Misra, S. B. 1968. Fossils found in the Pre-Cambrian Conception Group of southeastern Newfoundland. Nature, 220:680681.CrossRefGoogle Scholar
Antcliffe, J.B. and Brasier, M.D. 2008. Charnia at 50: Developmental models for Ediacaran fronds. Palaeontology, 51:1126.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology, 50:122 CrossRefGoogle Scholar
Bamforth, E.L., Narbonne, G. M., and Anderson, M. M. 2008. Growth and ecology of an Ediacaran multibranched rangeomorph from the Mistaken Point Assemblage, Newfoundland. Journal of Paleontology, 82:763777.CrossRefGoogle Scholar
Barthelemy, D. and Caraglio, Y. 2007. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99: 375407.CrossRefGoogle ScholarPubMed
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G.M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin 463.Google Scholar
Bottjer, D.J. and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12:400420.CrossRefGoogle Scholar
Bottjer, D. J. and Clapham, M. E. 2006. Evolutionary palaeoecology of Ediacaran benthic marine animals, p. 91114. In Xiao, S. and Kaufman, A.J. (eds.), Topics of Geobiology, Vol. 27: Neoproterozoic Geobiology and Paleobiology. Springer Netherlands.CrossRefGoogle Scholar
Bowring, S. A., Myrow, P., Landing, E., and Ramenzani, J. 2003. Geochronological constraints on terminal Neoproterozoic constraints and the rise of metazoans. Abstract 13045. NASA Astrobiology Institute (NAI) general meeting, special section IV: Early biosphere evolution, p. 113114.Google Scholar
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Brasier, M. D. and Antcliffe, J. 2009. Evolutionary relationships within the Avalonian Ediacara biota: New insights from laser analysis. Journal of the Geological Society, London, 166:363384.CrossRefGoogle Scholar
Butterfield, N. J. 2007. Macroevolution and microevolution through deep time. Palaeontology, 50: 4155.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.CrossRefGoogle ScholarPubMed
Clapham, M. E. and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C., and Anderson, M. A. 2004. Thectardis avalonensis; A new Ediacaran fossil from the Mistaken Point biota, Newfoundland. Journal of Paleontology, 78:10311036.2.0.CO;2>CrossRefGoogle Scholar
Compston, W., Wright, A. E., and Toghill, T. 2002. Dating the Late Precambrian volcanicity of England and Wales. Journal of the Geological Society, 159:323339.CrossRefGoogle Scholar
Conway Morris, S. 1990. Late Precambrian and Cambrian soft-bodied faunas. Annual Review of Earth and Planetary Sciences, 18:101122.CrossRefGoogle Scholar
Cooper, R.A. 1990. Interpretation of tectonically deformed fossils. New Zealand Journal of Geology and Geophysics, 33:321332.CrossRefGoogle Scholar
Ding, Q. X. and Chen, Y. Y. 1981. Discovery of soft metazoan from the Sinian System along eastern Yangtze Gorge, Hubei. Journal of the Wuhan College of Geology: pp. 5357.Google Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “seapen” Rangea . Journal of Morphology, 252:315334.CrossRefGoogle ScholarPubMed
Fedonkin, M. A. and Waggoner, B. M. 1999. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.CrossRefGoogle Scholar
Flude, L. I. and Narbonne, G. M. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences, 45:10951109.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran roots to a metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.CrossRefGoogle Scholar
Gehling, J. G., and Rigby, J. K. 1996. Long-expected sponges from the Neoproterozoic Ediacaran fauna, Pound Subgroup, South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Gehling, J. G., Drosser, M. L., Jensen, S., and Runnegar, B. N. 2006. Ediacaran organisms: relating form to function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development, Proceedings of a symposium honoring Adolf Seilacher for his contributions to palaeontology in celebration of his 80th birthday. Peabody Museum of Natural History, Yale University.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.CrossRefGoogle Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point Assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life; A Bio-historical Study. Cambridge University Press, London, 244 p.Google Scholar
Grazhdankin, D.V. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology, 45:5778.CrossRefGoogle Scholar
Grazhdankin, D.V. and Seilacher, A. 2005. A re-examination of the Namatype Vendian organism Rangea schneiderhoehni . Geological Magazine, 142:571582.CrossRefGoogle Scholar
Gürich, G. 1930. Über den Kuibis-Quarzit in Sudwestafrika: Zeitschrift der Deutschen Geologischen Gesellschaft, 82:637.Google Scholar
Hageman, S. J. 2003. Complexity generated by iteration of hierarchical modules in Bryozoa. Integrative and Comparative Biology, 43:8798.CrossRefGoogle ScholarPubMed
Halle, F. 1986. Modular growth in seed plants. Philosophical Transactions of the Royal Society of London, B, 313:7787.Google Scholar
Hofmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on the Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology, 82:136.CrossRefGoogle Scholar
Ichaso, A., Dalrymple, R. W., and Narbonne, G. M. 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences, 44:2541.CrossRefGoogle Scholar
Jefferies, R. P. S., Lewis, M., and Donovan, S. K. 1987. Protocystites Menevensis—A stem-group chordate (Cornuta) from the Middle Cambrian of south Wales. Palaeontology, 30:429484.Google Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian genus) Rangea and related forms. Paleobiology, 11:336355.CrossRefGoogle Scholar
Jenkins, J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York, NY/London, UK.CrossRefGoogle Scholar
Knoll, A. H. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Knoll, A. H. Princeton University Press, Princeton, NJ. 277 p.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2006. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 39:1330.CrossRefGoogle Scholar
Lake, P. 1943. Restoration of the original form of distorted specimens. Geological Magazine, 80:139147.CrossRefGoogle Scholar
Landing, E., Narbonne, G. M., Myrow, P. M., Benus, A. P., and Anderson, M. M. 1988. Faunas and depositional environments of the Upper Precambrian through lower Cambrian, southeastern Newfoundland (field trip road log), p. 2732. In Landing, E., Narbonne, G. M., and Myrow, P.M. (eds.), Trace fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin, 463:18–52.Google Scholar
Laflamme, M. and Narbonne, G. M. 2008a. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179.CrossRefGoogle Scholar
Laflamme, M. and Narbonne, G. M. 2008b. Competition in a Precambrian world: Palaeoecology and functional biology of Ediacaran fronds. Geology Today, 24:182187.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of the Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. In Vickers-Rich, P. and Komarower, P. (eds), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286:237257.Google Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of the late Precambrian coelenterate-bearing rock, southeastern Newfoundland. Geological Society of America Bulletin, 82:979987.CrossRefGoogle Scholar
Montani, R. 1997. New technique for retrodeforming tectonically deformed fossils, with an example for ichthyosaurian specimens. Lethaia, 30:221228.CrossRefGoogle Scholar
Myrow, P. M. 1995. Neoproterozoic rocks of the Newfoundland Avalon zone. Precambrian Research, 7:123136.CrossRefGoogle Scholar
Narbonne, G. M. 1998. The Ediacaran Biota: A terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8:26.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacaran biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth Planet Sciences, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M., Dalrymple, R. W., Gehling, J. G., Wood, D. A., Clapham, M. E., and Sala, R. A. 2001. Neoproterozoic Fossils and Environments of the Avalon Peninsula, Newfoundland. Field Trip B5, Geological Association of Canada-Mineralogical Association of Canada Joint annual Meeting, St. John's, Newfoundland, 98 p.Google Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology, 31:2730.2.0.CO;2>CrossRefGoogle Scholar
Narbonne, G. M., Dalrymple, R. W., Laflamme, M., Gehling, J. G., and Boyce, W. D. 2005. Mistaken Point Biota and the Cambrian of the Avalon. Field Trip Q6, North American Palaeontological Convention, Halifax, NS. 100p.Google Scholar
Narbonne, G. M., Gehling, J. G., and Vickers-Rich, P. 2007. The misty coasts of Newfoundland, p. 5368. In Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins Press, Baltimore. 344 p.Google Scholar
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009, Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology 83(4):503523.CrossRefGoogle Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology, 71:953967.CrossRefGoogle ScholarPubMed
Pflug, H. D. 1970. Zur fauna der Nama-Schichten in Südwest-Afrika, II. Rangeidae, Bau und systematische Zugehörigkeit. Palaeontographica, A135:198231.Google Scholar
Pflug, H. D. 1972, Systematik der jung-präkambrischen Petalonamae: Paläontologische Zeitschrift, 46:5667.Google Scholar
Runnegar, B. and Fedonkin, M. A. 1992. Proterozoic metazoan body fossils. In Schopf, J. W. and Klien, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York, 396–388.Google Scholar
Rushton, A. W. A. and Smith, M. 1993. Retrodeformation of fossils—A simple technique: Palaeontology, 36:927930.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Geological Society of London Special Publications, 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.CrossRefGoogle Scholar
Sdzuy, K. 1966. An improved method of analyzing distortion in fossils. Palaeontology, 9:125134.Google Scholar
Sharpe, D. 1847. On slaty cleavage. Geological Society [London] Quarterly Journal, 3:74105.CrossRefGoogle Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M. 2008. The Avalon Explosion: Evolution of Ediacara morphospace. Science, 319:8184.CrossRefGoogle ScholarPubMed
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286:355368.Google Scholar
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research 31:361375.Google Scholar
Van Kranendonk, M.J., Gehling, J.G., and Shields, G.A. 2008. Precambrian. p. 2336. In Ogg, J. G., Ogg, G., and Gradstein, F. M. (eds.), The Concise Geologic Time Scale. Cambridge University Press, 177 p.Google Scholar
Waggoner, B. 1999. Biogeographical analysis of the Ediacara biota: A problem with palaeotectonic reconstructions. Paleobiology, 25:440458.CrossRefGoogle Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology 43:104113.CrossRefGoogle ScholarPubMed
Williams, H. and King, A. F. 1979. Trepassey Map Area, Newfoundland: Geological Survey of Canada Memoir, 389:124.Google Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Paleoenviromental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, Southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:1375–13.CrossRefGoogle Scholar
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.CrossRefGoogle ScholarPubMed