Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T06:39:06.977Z Has data issue: false hasContentIssue false

On the biology of Calanus finmarchicus VIII. Food uptake, assimilation and excretion in adult and Stage V Calanus

Published online by Cambridge University Press:  11 May 2009

S. M. Marshall
Affiliation:
Marine Station, Millport
A. P. Orr
Affiliation:
Marine Station, Millport

Extract

Apart from a few scattered observations (Hensen, 1887; Gran, 1902) the study of the food of Calanus began with Dakin (1908). He examined the remains present in the gut, and this was the method used also by Esterly (1916), Lebour (1922) and Marshall (1924). They all found that these remains consisted of a greenish mush containing the skeletons of numerous planktonic organisms, chiefly diatoms and dinoflagellates. Naked flagellates were, how-ever, occasionally seen, and it was realized that the food might in reality consist largely of organisms which had no skeleton and could leave no recognizable remains.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braarud, T., 1939. Observations on the phytoplankton of the Oslo fjord, March-April, 1937. Nyt. Mag. Naturv., Bd. 80, pp. 211–18.Google Scholar
Clarke, G. L. & Bonnet, D. D., 1939. The influence of temperature on the survival, growth and respiration of Calanus finmarchicus. Biol. Bull., Woods Hole, Vol. 76, pp. 371–83.CrossRefGoogle Scholar
Clarke, G. L. & Gellis, S. S.,1935. The nutrition of copepods in relation to the food cycle of the sea. Biol. Bull., Woods Hole, Vol. 68, pp. 231–46.CrossRefGoogle Scholar
Crawshay, L. R.,1915. Notes on experiments in the keeping of planktonic animals under artificial conditions. J. Mar. biol. Ass. U.K., Vol. 10, pp. 555–76.CrossRefGoogle Scholar
Dakin, W. J., 1908. Notes on the alimentary canal and food of the Copepoda. Int. Rev. Hydrobiol., Bd. 1, pp. 772–82.CrossRefGoogle Scholar
Digby, P. S. B., 1954. The biology of the marine plankton copepods of Scoresby Sound, East Greenland. J. Anim. Ecol., Vol. 23, pp. 298338.CrossRefGoogle Scholar
Esterly, C. O., 1916. The feeding habits and food of pelagic copepods and the question of nutrition by organic substances in solution in the water. Univ. Calif. Publ. Zool., 1916. Vol. 9, pp. 253340.Google Scholar
Fogg, G. E., 1953. The Metabolism of Algae. London.CrossRefGoogle Scholar
Forster, G. R., 1953. Peritrophic membranes in the Caridea (Crustacea Decapoda). J. Mar. biol. Ass. U.K., Vol. 32, pp. 315–18.CrossRefGoogle Scholar
Fuller, J. L.,1937. Feeding rate of Calanus finmarchicus in relation to environmental conditions. Biol. Bull., Woods Hole, Vol. 72, pp. 233–46.CrossRefGoogle Scholar
Fuller, J. L. & Clarke, G. L.,1936. Further experiments on the feeding of Calanus finmarchicus. Biol. Bull., Woods Hole, Vol. 70, pp. 308–20.CrossRefGoogle Scholar
Gauld, D. T., 1951. The grazing rate of planktonic copepods. J. Mar. biol. Ass. U.K., Vol. 29, pp. 695706.CrossRefGoogle Scholar
Gauld, D. T., 1953. Diurnal variations in the grazing of planktonic copepods. J. Mar. biol. Ass. U.K., Vol. 31, pp. 461–74.CrossRefGoogle Scholar
Gest, H. & Kamen, M. D.,1948. Studies on the phosphate metabolism of green algae and purple bacteria in relation to photosynthesis. J. biol. Chem., Vol. 176, pp. 299318.CrossRefGoogle Scholar
Goldberg, E. D., Walker, T. J. & Whisenand, A., 1951. Phosphate utilization by diatoms. Biol. Bull., Woods Hole, Vol. 101, pp. 274–84.CrossRefGoogle Scholar
Gran, H. H., 1902. Das Plankton des norwegischen Nordmeeres von biologischen und hydrographischen Gesichtspunkten behandelt. Rep. Norweg. Fish. Invest., Vol. 2, No. 5, 222 pp.Google Scholar
Halldal, P., 1953. Phytoplankton investigations from weather ship M in the Norwegian Sea, 1948–49. Hvalrdd. Skr., No. 38, 91 pp.Google Scholar
Harvey, H. W., 1937. Note on selective feeding by Calanus. J. Mar. biol. Ass. U.K., Vol. 22, pp. 97100.CrossRefGoogle Scholar
Harvey, H. W., 1942. Production of life in the sea. Biol. Rev., Vol. 17, pp. 221–46.CrossRefGoogle Scholar
Harvey, H. W., Cooper, L. H. N., Lebour, M. V. & Russell, F. S., 1935. Plankton production and its control. J. Mar. biol. Ass. U.K., Vol. 20, pp. 407–42.CrossRefGoogle Scholar
Hensen, V., 1887. Ueber die Bestimmung des Planktons. Wiss. Meeresuntersuch., Ber. 5, pp. 1—108.Google Scholar
Huntsman, A. G., 1924. Limiting factors for marine animals. I: The lethal effect of sunlight. Contr. Canad. Biol., N.S., Vol. 2, pp. 83–8.Google Scholar
Kamen, M. D. & Spiegelman, S.,1948. Studies on the phosphate metabolism of some unicellular organisms. Cold Spr. Harb. Symp. quant. Biol., Vol. 13, p. 1.CrossRefGoogle Scholar
Ketchum, B. K. & Redfield, A. C, 1938. A method for maintaining a continuous supply of marine diatoms by culture. Biol. Bull., Woods Hole, Vol. 75, pp. 165–9.CrossRefGoogle Scholar
Klugh, A.B., 1929. The effect of the ultra-violet component of sunlight on certain marine organisms. Canad. J. Res., Vol. 1, pp. 100–9.CrossRefGoogle Scholar
Klugh, A.B., 1930. The effect of the u.v. component of light on certain aquatic organisms. Canad. J. Res., Vol. 3, pp. 104.CrossRefGoogle Scholar
Lebour, M. V., 1922. The food of plankton organisms. J. Mar. biol. Ass. U.K., Vol. 12, pp. 644–77.CrossRefGoogle Scholar
Lowndes, A. G., 1935. The swimming and feeding of certain Calanoid copepods. Proc. zool. Soc. Lond., 1935, pp. 687715.CrossRefGoogle Scholar
Marshall, S., 1924. The food of Calanus finmarchicus during 1923. J. Mar. biol. Ass. U.K., Vol. 13, pp. 473–9.CrossRefGoogle Scholar
Marshall, S. M., Nicholls, A. G. & Orr, A. P., 1935. On the biology of Calanus finmarchicus. VI: Oxygen consumption in relation to environmental conditions. J. Mar. biol. Ass. U.K., Vol. 20, pp. 128.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P., 1952. On the biology of Calanus finmarchicus. VII: Factors affecting egg production J. Mar. biol. Ass. U.K., Vol. 30, pp. 527–47.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P., 1955. The Biology of a Marine Copepod, Calanus finmarchicus, Gunnerus. Edinburgh.Google Scholar
Otterstrøm, C. V. & Nielsen, E. Steemann, 1939. Two cases of extensive mortality in fishes caused by the flagellate Prymnesium parvum Carter. Rep. Dan. biol Sta., Vol. 44, pp. 524.Google Scholar
Raymont, J. E. G. & Gross, F., 1942. On the breeding and feeding of Calanus finmarchicus under laboratory conditions. Proc. roy. Soc. Edinb., B, Vol. 61, pp. 267–87.Google Scholar
Rice, T. R., 1953. Phosphorus exchange in marine phytoplankton. Fish. Bull., U.S., Vol. 54, No. 80, pp. 7589.Google Scholar
Ryther, J. H., 1954. Inhibitory effects of phytoplankton upon the feeding of Daphnia magna with reference to growth, reproduction and survival. Ecology, Vol. 35, pp. 522–33CrossRefGoogle Scholar
Shilo, M. & Aschner, M., 1953. Factors governing the toxicity of cultures containing the phytoflagellate Prymnesium parvum Carter. J. gen. Microbiol., Vol. 8, pp. 333–43CrossRefGoogle ScholarPubMed
Spooner, G. M., 1949. Observations on the absorption of radioactive strontium and yttrium by marine algae. J. Mar. biol. Ass. U.K., Vol. 28, pp. 587625.CrossRefGoogle Scholar
Ussing, H. H., 1938. The biology of some important plankton animals in the fjords of East Greenland. Medd. Grmland, Bd. 100, pp. 1108.Google Scholar
Veall, N., 1948. A Geiger-Müller counter for measuring the beta-ray activity of liquids and its application to medical tracer experiments. Brit. J. Radiology, N.S., Vol. 21, pp. 347–51.CrossRefGoogle ScholarPubMed