Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T12:10:07.428Z Has data issue: false hasContentIssue false

The role of serum in leucocyte adherence to the plerocercoid of Ligula intestinalis (Cestoda: Pseudophyllidea)

Published online by Cambridge University Press:  06 April 2009

P. Hoole
Affiliation:
Parasitology Research Laboratory, Department of Biological Scieuses, University of Keele, Keele, Staffs. ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Scieuses, University of Keele, Keele, Staffs. ST5 5BG

Summary

The role of serum in the adherence of roach (Rutilus rutilus) leucocytes to the plerocercoid of Ligula intestinalis has been investigated in vitro. Roach plerocercoids, either untreated, cultured or killed (fixation in 0·5 % buffered glutaraldehyde or heat at 50°C for 45 mm), were exposed to serum and 4×106 leucocytes obtained from the pronephros of non-infected roach using a discontinuous Percoll gradient. At normal roach serum (NRoS) dilutions of 1:5000 to 1:100, leucocyte adherence was observed on all living parasites but was negligible in killed parasites or in complement-depleted NRoS assays. The number of adherent cells increased with increasing NRoS concentration. Leucocytes bound more avidly in the presence of heat-inactivated immune serum (hi IRoS); at a serum dilution of 1:5000 the percentage of the parasite surface covered by leucocytes was approximately 3 times greater in hi IRoS than in NRoS. Ultrastructural observations on parasites revealed that plerocercoids exposed to cells and hi IRoS had, in some areas, abnormal inclusions in their tegument and lacked a microthrix border and distal cytoplasm. In addition, the efflux of radioactivity from [14C] cycloleucine-labelled worms was greater in parasites incubated in the presence of hi IRos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arme, C. & Owen, R. W. (1968). Occurrence and pathology of Ligula intestinalis in British fishes. Journal of Parasitology 54, 272–80.CrossRefGoogle ScholarPubMed
Arme, C. & Owen, R. W. (1970). Observations on a tissue response within the body cavity of fish infected with the plerocercoid larvae of Ligula intestinalis (L.) (Cestoda: Pseudophyllidea). Journal of Fish Biology 2, 35–7.CrossRefGoogle Scholar
Baron, R. W. & Tanner, C. E. (1977). Echinococcus multilocularis in the mouse: the in vitro protoscolicidal activity of peritoneal macrophages. International Journal for Parasitology 7, 489–95.CrossRefGoogle ScholarPubMed
Beardsell, P. L. & Howell, M. J. (1984). Killing of Taenia hydatigena oncospheres by sheep neutrophils. Zeitschrift für Parasitenkunde 70, 337–44.CrossRefGoogle ScholarPubMed
Butterworth, A. E. (1984). Cell-mediated damage to helminths. In Advances in Parasitology, vol. 23 (ed. Baker, J. R. and Muller, R.), pp. 143235. New York and London: Academic Press.Google Scholar
Casarosa, L., Lugetti, G. & Tosi, D. (1981). Opsonic adherence reaction tra protoscolici di Echinococcus granulosus granulosus e macrofagi peritoneali di cavia. Annali della Facoltd di Medicina Veterinaria 34, 81–7.Google Scholar
Charles, G. H. & Orr, T. S. C. (1968). Comparative fine structure of outer tegument of Ligula intestinalis and Schistocephalus solidus. Experimental Parasitology 22, 137–49.CrossRefGoogle ScholarPubMed
Corbel, M. J. (1975). The immune response in fish: a review. Journal of Fish Biology 7, 539–63.CrossRefGoogle Scholar
Dean, D. A., Wister, R. & Chen, P. (1975). Immune response of guinea pigs to Schistosoma mansoni. I. In vitro effects of antibody and neutrophils, eosinophils and macrophages on schistosomula. American Journal of Tropical Medicine and Hygiene 24, 7482.CrossRefGoogle ScholarPubMed
Enoelkirk, P. G., Williams, J. F. & Signs, M. M. (1981). Interactions between Taenia taeniaeformis and host cells in in vitro: rapid adherence of peritoneal cells to strobilocerci. International Journal for Parasitology 11, 463–74.CrossRefGoogle Scholar
Hoole, D. & Arme, C. (1982). Ultrastructural studies on the cellular response of roach, Rutilus rutilus L., to the plerocercoid larva of the pseudophyllidean cestode, Ligula intestinalis. Journal of Fish Disease 5, 131–44.CrossRefGoogle Scholar
Hoole, D. & Arme, C. (1983 a). L.igula intestinalis (Cestoda: Pseudophyllidea): an ultrastructural study on the cellular response of roach fry, Rutilus rutilus. International Journal for Parasitology 13, 359–63.CrossRefGoogle Scholar
Hoole, D. & Arme, C. (1983 b). Ultrastructural studies on the cellular response of fish hosts following experimental infection with the plerocercoid of Ligula intestinalis (Cestoda: Pseudophyllidea). Parasitology 87, 139–49.CrossRefGoogle Scholar
Hoole, D. & Arme, C. (1985). The in vitro culture and tegumental dynamics of the plerocercoid of Ligula intestinalis (Cestoda: Pseudophyllidea). International Journal for Parasitology (in the Press).CrossRefGoogle Scholar
Incani, R. N. & McLaren, D. J. (1981). Neutrophil-mediated cytotoxicity to schistosomula of Shistosoma mansoni in vitro: studies on the kinetics of complement and/or antibody-dependent adherence and killing. Parasite Immunology 3, 107–26.CrossRefGoogle ScholarPubMed
Letonja, T. & Hammerberg, B. (1983). Third component of complement, immunoglobulin deposition, and leucocyte attachment related to surface sulfate on larval Taenia taeniaeformis. Journal of Parasitology 69, 637–44.CrossRefGoogle ScholarPubMed
Lockwood, A. P. M. (1963). Animal Body Fluids and their Regulation. London: Heinemann.Google Scholar
McLaren, D. J. & Ramalho-Pinto, F. J. (1979). Eosinophil-mediated killing of schistosomula of Shistosoma mansoni in vitro: synergistic effect of antibody and complement. Journal of Immunology 123, 1431–8.CrossRefGoogle Scholar
McLaren, D. J., Ramalho-Pinto, F. J. & Smithers, S. R. (1978). Ultrastructural evidence for complement and antibody-dependent damage to schistosomula of Shistosoma mansoni by rat eosinophils in vitro. Parasitology 77, 313–24.CrossRefGoogle Scholar
Molnar, K. & Berczi, I. (1965). Nachweis von parasitenspezifischen Antikörpern im Fischblut mittels der Agar-Gel-Präzipitationsprobe. Zeitschrift für Immunitätsforschung und experimentelle Therapie 129, 263–7.Google Scholar
Otto, T. N. & Heckmann, A. (1984). Host tissue response for trout infected with Diphyllobothrium cordiceps larvae. Great Basin Naturalist 44, 125–32.Google Scholar
Rosen, R. & Dick, T. A. (1984 a). Growth and migration of plerocercoids of Trianophorus crassus Forel and pathology in experimentally infected whitefish, Coregonus clupeaformis (Mitchill). Canadian Journal of Zoology 62, 203–11.CrossRefGoogle Scholar
Rosen, R. & Dick, T. A. (1984 b). Experimental infections of rainbow trout, Salmo gairdneri, with plerocercoids of Triaenophorus crassus Forel. Journal of Wildlife Diseases 20, 34–8.CrossRefGoogle ScholarPubMed
Sakai, D. K. (1984). Opsonization by fish antibody and complement in the immune phagocytosis by peritoneal exudate cells isolated from salmonid fishes. Journal of Fish Diseases 7, 2938.CrossRefGoogle Scholar
Samuelson, J. C., Sher, A. & Caulfield, J. P. (1980). Newly tranformed schistosomula spontaneously lose surface antigens and C3 acceptor sites during culture. Journal of lmmunology 124, 2055–7.Google Scholar
Stave, J. W., Roberson, B. S. & Hetrick, F. M. (1984). Factors affecting the chemiluminescent response of fish phagocytes. Journal of Fish Biology 25, 197206.CrossRefGoogle Scholar
Stromberg, P. C. & Crites, J. L. (1974). Triaenophoriasis in Lake Erie white bass, Morone chrysops. Journal of Wildlife Diseases 10, 354–8.CrossRefGoogle ScholarPubMed
Sweeting, R. A. (1977). Studies on Ligula intestinalis. Some aspects of the pathology in the second intermediate host. Journal of Fish Biology 10, 4350.CrossRefGoogle Scholar
Threadgold, L. T. & Hopkins, C. A. (1981). Schistocephalus solidus and Ligula intestinalis: pinocytosis by the tegument. Experimental Parasitology 51, 444–56.CrossRefGoogle ScholarPubMed
Wrathmell, A. B. & Parish, N. M. (1980). Cell surface receptors in the immune response in fish. In Phylogeny of Immunological Memory (ed. Manning, M. J.), pp. 143–52. Oxford, Amsterdam, New York: Elsevier/North Holland Biomedical Press.Google Scholar