Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T09:08:40.425Z Has data issue: false hasContentIssue false

Quantifying the periodicity of Heinrich and Dansgaard–Oeschger events during Marine Oxygen Isotope Stage 3

Published online by Cambridge University Press:  20 January 2017

Abstract

Data from multiple ice and sediment cores in the North Atlantic show that Marine Oxygen Isotope Stage 3 (MIS 3) was characterized by recurring millennial-scale variations in climate, but the periodic behavior of the well-known millennial-scale variations, Heinrich events and Dansgaard–Oeschger events, is uncertain. We use oxygen isotope values from the Greenland Ice Sheet Project 2 (GISP2) and North Greenland Ice Core Project (NGRIP) ice cores and estimated sea-surface temperature derived from a Bermuda Rise marine sediment core as climate proxies to assess the periodic behavior of Heinrich events and Dansgaard–Oeschger events using Lomb–Scargle spectral decomposition and continuous time autoregressive models. We find that continuous time autoregressive models produce less variable estimates of periodicity for Heinrich events than Lomb–Scargle methods. Heinrich events during MIS 3 are periodic with an estimated periodicity of 6.29–6.49 ka in the GISP 2 ice core, 6.71–6.76 ka in the marine sediment core, and 7.89–8.23 ka in the NGRIP core. There is insufficient evidence from these data to conclude that Dansgaard–Oeschger events exhibit a single periodicity during MIS 3. We also find that the periodic behavior of millennial-scale variations depends on the observational time frame.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Anandakrishnan, S., and Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography 16, 2 (2001). 190198. http://dx.doi.org/10.1029/2000PA000518CrossRefGoogle Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., Vinther, B.M., and Clausen, H.B. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 23–24 (2006). 32463257. http://dx.doi.org/10.1016/j.quascirev.2006.08.002CrossRefGoogle Scholar
Bassinot, F., and Labeyrie, L. IMAGES MD 101: A coring cruise of the R/V Marion Dufresne in the North Atlantic Ocean and Norwegian Sea. (1995). l'Institut Français pour la Recherche et la Technologie Polaires, Plouzané, France.Google Scholar
Belcher, J., Hampton, J.S., and Wilson, G.T. Parameterization of continuous time autoregressive models for irregularly sampled time series data. Journal of the Royal Statistical Society, Series B (Methodology) 56, 1 (1994). 141155.Google Scholar
Blunier, T., and Brook, E.J. Timing of the millenial-scale climate change in Antarctica and Greenland during the Last Glacial Period. Science 291, (2001). 109112. http://dx.doi.org/10.1126/science.291.5501.109Google Scholar
Bond, G.C., and Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciations. Science 267, (1995). 10051010.Google Scholar
Bond, G.C., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, (1993). 143147.Google Scholar
Bond, G.C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., and Johnson, S. The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the little ice age, mechanisms of global climate change at millennial time scales. Geophysical Monograph 112, (1999). 3558.Google Scholar
Braun, H., Ditlevsen, P., Kurths, J., and Mudelsee, M. Limitations of red noise in analyzing Dansgaard–Oeschger events. Climate of the Past 6, (2010). 8592.Google Scholar
Braun, H., Ditlevsen, P., Kurths, J., and Mudelsee, M. A two-parameter stochastic process for Dansgaard–Oeschger events. Paleoceanography 26, (2011). PA3214 http://dx.doi.org/10.1029/2011PA002140Google Scholar
Clement, A.C., and Peterson, L. Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics 46, (2008). RG4002 http://dx.doi.org/10.1029/2006RG000204CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.Google Scholar
Dergachev, V.A., and van Geel, B. Large-scale periodicity of climate change during the Holocene. Scott, E. et al. Impact of the Environment of Human Migration in Eurasia. (2004). Kluwer Academic Publishers, Dordrecht, Netherlands. 159183.Google Scholar
Dima, M., and Lohmann, G. Conceptual model for millennial climate variability: a possible combined solar-thermohaline circulation origin for the 1,500-year cycle. Climate Dynamics 32, (2009). 301311. http://dx.doi.org/10.1007/s00382-008-0471-xGoogle Scholar
Ditlevsen, P.D. Observation of α-stable noise induced millennial climate changes from an ice-core record. Geophysical Research Letters 26, (1999). 14411444.CrossRefGoogle Scholar
Ditlevsen, P.D., and Johnsen, S.J. Tipping points: early warning and wishful thinking. Geophysical Research Letters 37, (2010). L19703 http://dx.doi.org/10.1029/2010GL044486CrossRefGoogle Scholar
Ditlevsen, P.D., Kristensen, M.S., and Andersen, K.K. The recurrence time of Dansgaard–Oeschger events and limits on the possible periodic component. Journal of Climate 18, (2005). 25942603.CrossRefGoogle Scholar
Ditlevsen, P.D., Andersen, K.K., and Svensson, A. The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Climate of the Past 3, (2007). 129134.Google Scholar
Glynn, E.F., Chen, J., and Mushegian, A.R. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb–Scargle periodograms. Bioinformatics 22, 3 (2005). 310316. http://dx.doi.org/10.1093/bioinformatics/bti789Google Scholar
Goldstein, S., and Hemming, S. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Elderfield, H. Treatise on Geochemistry. The Oceans and Marine Geochemistry 6, (2003). Elsevier, San Diego, California. 453489.Google Scholar
Gorbarenko, S.A., Harada, N., Malakhov, M.I., Velivetskaya, T.A., Vasilenko, Y.P., Bosin, A.A., Derkachev, A.N., Goldberg, E.L., and Ignatiev, A.V. Responses of the Okhotsk Sea environment and sedimentology to global climate changes at the orbital and millennial scale during the last 350 kyr. Deep Sea Research Part II 61–64, (2012). 7384. http://dx.doi.org/10.1016/j.dsr2.2011.05.016Google Scholar
Grootes, P.M., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10− 3 to 105-year time resolution. Journal of Geophysical Research 102, C12 (1997). 26,45526,470.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552554.CrossRefGoogle Scholar
Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, (1988). 142145.Google Scholar
Hemming, S.R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, (2004). RG1005 http://dx.doi.org/10.1029/2003RG000128CrossRefGoogle Scholar
Hinnov, L.A., Schulz, M., and Yiou, P. Interhemispheric space-time attributes of the Dansgaard–Oeschger oscillations between 100 and 0 ka. Quaternary Science Reviews 21, (2002). 12131228.CrossRefGoogle Scholar
Horne, J.H., and Baliunas, S.L. A prescription for period analysis of unevenly sampled time series. The Astrophysical Journal 302, (1986). 757763.Google Scholar
Keigwin, L.D., and Boyle, E.A. Surface and deep ocean variability in the northern Sargasso Sea during marine isotope stage 3. Paleoceanography 14, 2 (1999). 164170.CrossRefGoogle Scholar
Koen, C. The analysis of irregularly observed stochastic astronomical time series — I. Basics of linear stochastic differential equations. Monthly Notices of the Royal Astronomical Society 361, (2005). 887896. http://dx.doi.org/10.1111/j.1365-2966.2005.09213.xGoogle Scholar
Kwasniok, F., and Lohmann, G. Deriving dynamical models from paleoclimate records: application to millennial-scale climate variability. Physical Review E 80, (2009). 066104 Google Scholar
Liu, X.Y., Pei, L.Q., Zhang, S.M., Wang, Y., and Dai, Y.D. Characteristics of magnetocardiography and electrocardiography in the time-frequency domain. Chinese Science Bulletin 56, 8 (2011). 819825. http://dx.doi.org/10.1007/s11434-010-4066-7Google Scholar
Lomb, N.R. Least squares frequency analysis of unequally spaced data. Astrophysics and Space Science 39, (1976). 447462.Google Scholar
Meese, D.A., Alley, R.B., Fiacco, R.J., Germani, M.S., Gow, A.J., Grootes, P.M., Illing, M., Mayewski, P.A., Morrison, M.C., Ram, M., Taylor, K.C., Yang, Q., and Zielinski, G.A. Preliminary depth-age scale of the GISP2 ice core. Special CRREL Report 94–1. (1994). US Army Corps of Engineers, Washington, D.C..Google Scholar
Meese, D.A., Gow, A.J., Alley, R.B., Zielinkski, G.A., Grootes, P.M., Ram, M., Taylor, K.C., Mayewski, P.A., and Bolzan, J.F. The Greenland Ice Sheet Project 2 depth–age scale: methods and results. Journal of Geophysical Research 102, C12 (1997). 26,41126,423.Google Scholar
Olsen, L., and Hammer, Ø. A 6-ka climate cycle during a least the last 50,000 years. Norges geologiske undersøkelse Bulletin 445, (2005). 89100.Google Scholar
Pardo-Iguzquiza, E., and Rodríquez-Tovar, F.J. Implemented Lomb–Scargle periodogram: a valuable tool for improving cyclostratigraphic research on unevenly sampled deep-sea stratigraphic sequences. Geo-Marine Letters 31, (2011). 537545. http://dx.doi.org/10.1007/s00367-011-0247-xGoogle Scholar
Pisias, N.G., Clark, P.U., and Brook, E.J. Modes of global climate variability during marine isotope stage 3 (60–26 ka). Journal of Climate 23, (2010). 15811588. http://dx.doi.org/10.1175/2009JCLI3416.1Google Scholar
Prahl, F.G., and Wakeham, S.G. Calibration of unsaturation pattern in long-chain ketone compositions for paleotemperature assessment. Nature 330, (1987). 367369.CrossRefGoogle Scholar
R Development Core Team, R: A Language and Environment for Statistical Computing. (2011). R Foundation for Statistical Computing, Vienna, Austria. (Available: http://www.R-project.org/)Google Scholar
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, (2002). 207214.Google Scholar
Rahmstorf, S. Timing of abrupt climate change: a precise clock. Geophysical Research Letters 30, 10 (2003). 1510 http://dx.doi.org/10.1029/2003GL017115CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, (2006). D06102 http://dx.doi.org/10.1029/2005JD006079CrossRefGoogle Scholar
Ruf, T. The Lomb–Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time series. Biological Rhythm Research 30, 2 (1999). 178201.Google Scholar
Sachs, J.P., and Lehman, S.J. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286, (1999). 756759.Google Scholar
Scargle, J.D. Studies in astronomical time series. II. Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal 263, (1982). 835853.Google Scholar
Schulz, M. On the 1470-year pacing of the Dansgaard–Oeschger warm events. Paleoceanography 17, 2 (2002). http://dx.doi.org/10.1029/2000PA000571CrossRefGoogle Scholar
Stuiver, M., Grootes, P.M., and Braziunas, T.F. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quaternary Research 44, (1995). 341354. http://dx.doi.org/10.1006/qres.1995.1079Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., Steffensen, J.P., and Vinther, B.M. The Greenland ice core chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, 23–24 (2006). 32583267. http://dx.doi.org/10.1016/j.quascirev.2006.08.003Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, I., Steffensen, J.P., and Vinther, B.M. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, (2008). 4757.Google Scholar
Thomas, A.M., Rupper, S., and Christensen, W.F. Characterizing the statistical properties and interhemispheric distribution of Dansgaard–Oeschger events. Journal of Geophysical Research 116, (2011). D03 103 http://dx.doi.org/10.1029/2010JD014834Google Scholar
Van Dongen, H.P.A., Olofsen, E., Van Hartevelt, J.H., and Kruyt, E.W. A procedure of multiple period searching in unequally spaced time-series with the Lomb–Scargle method. Biological Rhythm Research 30, 2 (1999). 149177.Google Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggard-Andersen, M.-L., Steffensen, J.P., and Svensson, A. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research 111, (2006). D13102 http://dx.doi.org/10.1029/2005JD006921Google Scholar