Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T17:30:49.443Z Has data issue: false hasContentIssue false

Pollen evidence for variations in the southern margin of the westerly winds in SW patagonia over the last 12,600 years

Published online by Cambridge University Press:  20 January 2017

Rodrigo Villa-Martínez*
Affiliation:
Centro de Estudios del Cuaternario, Avenida Bulnes 01890, Punta Arenas, Chile
Patricio I. Moreno
Affiliation:
Centro de Estudios del Cuaternario, Avenida Bulnes 01890, Punta Arenas, Chile Institute of Ecology and Biodiversity and Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Chile
*
*Corresponding author.E-mail address:rodvilla@uchile.cl (R. Villa-Martínez).

Abstract

We report pollen and charcoal records from Vega Ñandú (∼ 51°0′S, 72°45′W), a small mire located near the modern forest-steppe ecotone in Torres del Paine National Park, southern Chile. The record shows an open landscape dominated by low shrubs and herbs between 12,600 and 10,800 cal yr BP, under cold and relatively humid conditions. Nothofagus experienced frequent, large-amplitude oscillations between 10,800 and 6800 cal yr BP, indicating recurrent transitions between shrubland/parkland environments, under warm and highly variable moisture conditions. A sustained increase in Nothofagus started at 6800 cal yr BP, punctuated by step-wise increases at 5100 and 2400 cal yr BP, implying further increases in precipitation. We interpret these results as indicative of variations in the amount of precipitation of westerly origin, with prominent increases at 6800, 5100, and 2400 cal yr BP. These pulses led to peak precipitation regimes during the last two millennia in this part of SW Patagonia. Our data suggest variations in the position and/or strength of the southern margin of the westerlies, most likely linked to variations in the extent and/or persistence of sea ice and sea-surface temperature anomalies in the Southern Ocean. Over the last two centuries the record shows a forest decline and expansion of Rumex acetosella, an exotic species indicative of European disturbance.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceituno, P., Fuenzalida, H., Rosenbluth, (1993). Climate along the extratropical west coast of South America.. Mooney, , Fuentes, , Kromberg, Earth Systems Responses to Global Change.. Academic Press, 6170.Google Scholar
Aravena, J.C., Lara, A., Wolodarsky-Franke, A., Villalba, R., Cuq, E.(2002). Tree-ring growth patterns and temperature reconstruccion from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia.. Revista Chilena de Historia Natural 75, 361376.Google Scholar
Bengtsson, L., Enell, M.(1986). Chemical analysis.. Berglund, B.E. Handbook of Palaeoecology and Palaeohydrology John Wiley and Sons, 423451.Google Scholar
Endlicher, W., Santana, A.(1988). El clima del sur de la Patagonia y sus aspectos ecológicos. Un siglo de mediciones climatológicas en Punta Arenas.. Anales del Instituto de la Patagonia, Serie Ciencias Naturales 18, 5786.Google Scholar
Faegri, K., Iversen, J.(1989). Textbook of Pollen Analysis.. John Wiley and Sons, .Google Scholar
Fesq-Martin, M., Friedmann, A., Peters, M., Behrmann, J., Kilian, R.(2004). Late-glacial and Holocene vegetation history of the Magellanic rain forest in southwestern Patagonia, Chile.. Vegetation History and Archaeobotany 13, 249255.Google Scholar
Gajardo, R. (1993). La Vegetación Natural de Chile: Clasificación Y distribución geográfica.. Editoral Universitaria, Santiago, Chile.Google Scholar
Gilli, A., Anselmetti, F.S., Ariztegui, D., Bradbury, J.P., Kelts, K.R., Markgraf, V., McKenzie, J.A.(2001). Tracking abrupt climate change in the Southern Hemisphere: a seismic stratigraphic study of Lago Cardiel, Argentina (49 S).. Terra Nova 13, 443448.Google Scholar
Gilli, A., Ariztegui, D., Anselmetti, F.S., McKenzie, J.A., Markgraf, V., Hajdas, I., McCulloch, R.D.(2005). Mid-Holocene strengthening of the Southern Westerlies in South America–Sedimentological evidences from Lago Cardiel, Argentina (498S).. Global and Planetary Change 49, 7593.Google Scholar
Grimm, E. (1987). CONISS: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares.. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Haberzettl, T..(2006). Late Quaternary hydrological variability in Southeastern Patagonia–45,000 years of terrestrial evidence from Laguna Potrok Aike..Unpublished PhD thesis.University of Bremen, .Google Scholar
Heiri, O., Lotter, A., Lenmcke, G.(2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results.. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Heusser, C.J. (1995). Three Late Quaternary pollen diagrams from southern Patagonia and their paleoecological implications.. Palaeogeography, Palaeoclimatology, Palaeoecology 118, 124.Google Scholar
Heusser, C.J. (1998). Deglacial paleoclimate of the American sector of the Southern Ocean: Late Glacial-Holocene records from the latitude of Canal Beagle (55°S). Argentine Tierra del Fuego.. Palaeogeography, Palaeoclimatology, Palaeoecology 141, 277301.Google Scholar
Hodell, D.A., Shemesh, A., Crosta, X., Kanfoush, S., Charles, C., Guilderson, T.(2001). Abrupt cooling of Antarctic surface water and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr B.P.. Quaternary Research 56, 191198.Google Scholar
Huber, U.M., Markgraf, V., Schäbitz, F.(2004). Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America.. Quaternary Science Reviews 23, 10791097.Google Scholar
Jacobson, G.L.J., Webb, T.I., Grimm, E.C.(1987). Patterns and rates of vegetation change during the deglaciation of eastern North America.. Ruddiman, W.F., Wright, H.E.J. North America During Deglaciation The Geology of North America Geological Society of America, Boulder, CO, USA.277288.Google Scholar
Jenny, B., Valero-Garcés, B., Villa-Martínez, R., Urrutia, R., Geyh, M., Veit, H.(2002). Evidence for an early to mid-Holocene aridity in Central Chile (34°S) related to the Southern Westerlies: The Laguna Aculeo record.. Quaternary Research 58, 160170.Google Scholar
Lamy, F., Hebbelm, D., Rohl, U., Wefer, G.(2001). Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the southern westerlies.. Earth and Planetary Science Letters 185, 369382.CrossRefGoogle Scholar
Leventer, A., Domack, E., Barkoukis, A., McAndrews, B., Murray, J.(2002). Laminations from the Palmer Deep: A diatom-based interpretation.. Palaeoceanography 17, 8002 10.1029/2001PA000624.Google Scholar
Luebert, F., Pliscoff, P.(2006). Sinopsis Bioclimática y Vegetacional de Chile.. Editorial Universitaria, Santiago, Chile.Google Scholar
Mancini, M.V. (1993). Recent pollen spectra from forest and steppe of South Argentina: a comparison with vegetation and climate data.. Review of Palaeobotany and Palynology 77, 129142.Google Scholar
Markgraf, V., Bradbury, J.P., Schwalb, A., Burns, S.J., Stern, C., Ariztegui, D., Gilli, A., Anselmetti, F.S., Stine, S., Maidana, N.(2003). Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina.. The Holocene 11, 581591.Google Scholar
Massaferro, J., Brooks, S.J., Haberle, S.G.(2005). The dynamics of chironomid assemblages and vegetation during the Late Quaternary at Laguna Facil, Chonos Archipelago, southern Chile.. Quaternary Science Reviews 24, 25102522.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.-R., Steig, E.J., Stievenard, M., Vaikmae, R.(2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records.. Quaternary Research 348358.Google Scholar
Miller, J. (1976). The climate of Chile.. Schwerdtfeger, W. Climates of Central and South America Elsevier, Amsterdam.113145.Google Scholar
Moreno, P.I. (2004). Millennial-scale climate variability in northwest Patagonia during the last 15,000 yr.. Journal of Quaternary Science 19, 3547.Google Scholar
Moreno, P.I., León, A.L.("n, 2003). Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America.. Journal of Quaternary Science 18, 787800.Google Scholar
Nielsen, S.H.H., Koç, N., Crosta, X.(2004). Holocene climate in the Atlantic sector of the Southern Ocean: Controlled by insolation or oceanic circulation?.. Geology 32, 317320.Google Scholar
Pisano, E. (1974). Estudio Ecológico de la Región continental sur del área Andino-Patagónica II: Contribución a la fitogeografía de la zona del Parque Nacional Torres del Paine.. Anales del Instituto de la Patagonia 5, 59104.Google Scholar
Pisano, E. (1992). Sectorización fitogeográfica del archipielago sud patagonico-fueguino. V: Sintaxonomia y distribución de las unidades de vegetación vascular.. Anales del Instituto de la Patagonia 21, 633.Google Scholar
Romero, H. (1985). Geografía de los climas.. Instituto Geografico Militar, Santiago de Chile.Google Scholar
Schäbitz, F. ("bitz, 1991). )Holocene vegetation and climate in southern Santa Cruz, Argentina.. Bamberger Geographische Schriften 11, 235244.Google Scholar
Sjunneskog, C., Taylor, F.(2002). Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 1. Total diatom abundance.. Palaeoceanography 17, 10.1029/2000PA000563.Google Scholar
Stern, C. (2004). Active Andean volcanism: its geologic and tectonic setting.. Revista Geológica de Chile 31, 161206.Google Scholar
Stern, C. (2007). Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes.. Bulletin of Volcanology 10.1007/S00445-007-0148-Z.Google Scholar
Stokmarr, J. (1971). Tablets with spores in absolute pollen analysis.. Pollen et Spores 13, 615621.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d. Plicht, J., Spurk, M.(1998). INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP.. Radiocarbon 40, 10411083.Google Scholar
Taylor, F., Sjunneskog, C.(2002). Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2. Diatom assemblages.. Palaeoceanography 17, 8001 10.1029/2000PA000564.Google Scholar
Valero-Garcés, B., Jenny, B., Rondanelli, M., Delgado-Huertas, A., Burns, S.J., Veit, H., Moreno, A.("s et al., 2005). Palaeohydrology of Laguna de Tagua Tagua (34° 30′S) and moisture fluctuations in Central Chile for the last 46000 yr.. Journal Quaternary Science 20, 117.Google Scholar
Veit, H. (1996). Southern westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico.. Palaeogeography, Palaeoclimatology, Palaeoecology 3, 107119.Google Scholar
Villa-Martínez, R., Villagrán, C., Jenny, B.(2003). The last 7500 cal yr B.P. of westerly rainfall activity in Central Chile inferred from a high resolution pollen record from Laguna de Aculeo (lat. 34°S).. Quaternary Research 60, 284293.Google Scholar
Villalba, R., Lara, A., Boninsegna, J., Masiokas, M., Delgado, S., Aravena, J.C., Roig, F.A., Schmelter, A., Wolodarsky-Franke, A., Ripalta, A.(2003). Large-scale temperature changes across the Southern Andes: 20th -century variations in the context of the past 400 years.. Climatic Change 59, 177232.Google Scholar
Weischet, W. (1985). Climatic constraints for the development of the far south of Latin America.. GeoJournal 11, 1787.Google Scholar
Wright, H.T. (1967). A square rod piston sampler for lake sediments.. Journal of Sedimentary Petrology 37, 975976.Google Scholar