Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T06:21:21.730Z Has data issue: false hasContentIssue false

Paleoecological Studies of a Holocene Lacustrine Record from the Kangerlussuaq (Søndre Strømfjord) Region of West Greenland

Published online by Cambridge University Press:  20 January 2017

Wendy R. Eisner
Affiliation:
Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, Ohio 43210
Torbjörn E. Törnqvist
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, The Netherlands
Eduard A. Koster
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, The Netherlands
Ole Bennike
Affiliation:
Geological Survey of Denmark, Thoravej 8, DK-2400 København NV, Denmark
Jacqueline F.N. van Leeuwen
Affiliation:
Laboratory of Palaeobotany and Palynology, Utrecht University, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands

Abstract

A lacustrine sediment record from the Kangerlussuaq region, West Greenland, has resulted in a pollen, macrofossil, and sediment stratigraphy that encompasses the last 5000 14C yr. Deglaciation of the area and subsequent development of a nearby floodplain occurred before 5000 yr B.P. Since that time eolian sand and silt deposition appear to have been continuous, with a significant increase ca. 1000 14C yr B.P. Pollen analysis shows little change in the character of the vegetation throughout the record. Fluctuations in herb pollen taxa indicate changes in the extent and development of eolian sand sheets. The oldest pollen zone records relatively little pollen accumulation and low taxa diversity. This is followed by a zone of high pollen accumulation, presumably a phase of highest vegetation density, from 4400 to 3400 14C yr B.P. Thereafter, declining pollen accumulation rates reveal a gradual environmental deterioration. Macrofossil analyses record significant limnological changes, with an early eutrophic phase followed by a masotrophic phase and a reversal to more eutrophic conditions in the final phase. The preserved record illustrates the interactions of deglaciation, eolian activity, regional vegetation, and limnological change.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, M. (1970). Potamogetonaceae fruits. I. Recent and subfossil endocarps of the fennoscandian species. Acta Botanica Fennica 88, 188.Google Scholar
Andrews, J. T., and Nichols, H. (1981). Modem pollen deposition and Holocene paleotemperature reconstructions, central northern Canada. Arctic and Alpine Research, 13, 387408.Google Scholar
Bennike, O. (1990). The Kap K0benhavn Formation: Stratigraphy and palaeobotany of a Plio-Pleistocene sequence in Peary land, North Greenland. Meddelelser om Grfinland, Geoscience 23, 185.Google Scholar
Beyens, L. Chardez, D., and de Baere, D., with the collaboration of de Bock, P. (1992). The Testate amoebae from the S0ndre Str0mfjord region (West Greenland): Their biogeographic implications. Archiv fur Protistenkunde 142, 513.CrossRefGoogle Scholar
Bocher, J. (1988). The Coleoptera of Greenland. Meddelelser om Gr0nland, Bioscience 26, 1100.Google Scholar
Bocher, T. W. (1949). Climate, soil, and lakes in continental West Greenland in relation to plant life. Meddelelser om Grfinland 147, 163.Google Scholar
Bocher, T. W (1954). Oceanic and continental vegetational complexes in Southwest Greenland. Meddelelser om Grfinland 148(1), 1336.Google Scholar
Bocher, T. W. (1959). Floristic and ecological studies in Middle West Greenland. Meddelelser om Grfinland 156(5), 168.Google Scholar
De Graaf, E. Van Soelen, P. Willemse, N. Zeeberg, J., and Tomqvist, T. E. (1991). Chronostratigraphic and palaeoenvironmental analysis of lake deposits in relation to deglaciation of the S0ndre Str0mQord area, West Greenland: A preliminary report. Circumpolar Journal 6(3-4), 4251.Google Scholar
De Molenaar, J. G. (1976). Vegetation of the Angmagssalik District, Southeast Greenland. II. Herb and snow bed vegetation. Meddelelser om Grfinland 198, 1266.Google Scholar
Dijkmans, J. W. A. (1989). Frost wedges in an eolian sand sheet near S0ndre Str0mfjord, W. Greenland and their paleoenvironmental implications. Zeitschrift fur Geomorphologie 33, 339353.Google Scholar
Dijkmans, J. W. A. (1990). Niveo-aeolian sedimentation and resulting sedimentary structures; S0ndre Str0mfjord area, western Greenland. Permafrost and Periglacial Processes 1, 8396.Google Scholar
Dijkmans, J. W. A., and Tomqvist, T. E. (1991). Modem periglacial eolian deposits and landforms in the S0ndre Str0mf]ord area, West Greenland and their palaeoenvironmental implications. Meddelelser om Grtfnland, Geoscience 25, 139.Google Scholar
Dorofeev, P. I. (1986). “Iskopaemye Potamogeton.” Pp. 1134. Nauka, St. Petersburg.Google Scholar
Fredskild, B. (1973). Studies in the vegetational history of Greenland. Palaeobotanical investigations of some Holocene lake and bog deposits. Meddelelser om Grfinland 198(4), 1245.Google Scholar
Fredskild, B. (1977). The development of the Greenland lakes since the last glaciation. Folia Limnologia Scandinavia 17, 101106.Google Scholar
Fredskild, B. (1983a). The Holocene development of some low and high arctic Greenland lakes. Hydrobiologia 103, 217224.CrossRefGoogle Scholar
Fredskild, B. (1983b). The Holocene vegetational development of the Godthabsijord area West Greenland. Meddelelser om Grfinland, Geoscience 10, 128.Google Scholar
Fredskild, B. (1985). Holocene pollen records from West Greenland. In“Quaternary Environments” (Andrews, J. T., Ed.), pp. 643681. Allen and Unwin, Boston.Google Scholar
Fredskild, B. (1992). The Greenland limnophytes—Their present distribution and Holocene history. Acta Botanica Fennica 144, 93113.Google Scholar
Fredskild, B., and 0dum, S. (1990). The Greenland Mountain birch zone, an introduction. Meddelelser om Gr0nland, Bioscience 33, 37.Google Scholar
Funder, S., and Fredskild, B. (1989). Paleofaunas and floras (Greenland). In “Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), Geological Survey of Canada, Geology of Canada, Vol. 1, pp. 741792. Geological Survey of Canada, Ottawa, Canada.Google Scholar
Grimm, E. C. (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335,Google Scholar
Hansen, K. (1970). Geological and geographical investigations in Kong Frederik IX’s Land: Morphology, sediments, periglacial processes, salt lakes. Meddelelser om Grfinlund 188(4), 177.Google Scholar
Hulten, E., and Fries, M. (1986). “Atlas of North European Vascular Plants 1-111.” Koeltz Scientific Books, Konigstein.Google Scholar
Hyvarinen, H. (1985). Holocene pollen stratigraphy of Baird Inlet, eastcentral Ellesmere Island, arctic Canada, Boreas 14, 1932.Google Scholar
Iversen, J. (1954). Origin of the flora of Western Greenland in the light of pollen analysis. Oikos 4, 85103.Google Scholar
Koster, E. A. (1988). Ancient and modern coJd-climate aeolian sand deposition: A review. Journal of Quaternary Science 3, 101111.Google Scholar
Laegaard, S. (1960). Two species of Potamogeton new to Greenland. Botanisk Tidsskrift 56, 247251.Google Scholar
Martin, A. C. (1951). Identifying pond weed seeds eaten by ducks. Journal of Wildlife Management 15, 253258.Google Scholar
Pennington, W. (1980). Modem pollen samples from West Greenland and the interpretation of pollen data from the British late-glacial (Late Devensian). New Phytologist 84, 171201.Google Scholar
Porsild, A. E., and Cody, W. J. (1980). “Vascular Plants of Continental Northwest Territories, Canada.” National Museum of Natural Sciences, Ottawa.Google Scholar
Ritchie, J. C. (1987). “Postglacial Vegetation of Canada.” Cambridge Univ. Press, Cambridge, pp.Google Scholar
Sandgren, P., and Fredskild, B. (1991). Magnetic measurements recording Late Holocene man-induced erosion in S. Greenland. Boreas 20, 315331.Google Scholar
Short, S. K., and Nichols, H. (1977). Holocene pollen diagrams from subarctic Labrador-Ungava: Vegetational history and climatic change. Arctic and Alpine Research 9, 265290.Google Scholar
Ten Brink, N. W. (1975). Holocene history of the Greenland ice sheet based on radiocarbon-dated moraines in West Greenland. Meddelelser om Grfinland 201(4), 144.Google Scholar
Ten Brink, N. W., and Weidick, A. (1974). Greenland ice sheet history since the last glaciation. Quaternary Research 4, 429440.Google Scholar
Tomqvist, T. E., and Bierkens, M. F. P. (1994). How smooth should curves be for calibrating radiocarbon ages? Radiocarbon 36, 126.Google Scholar
Tomqvist, T. E. de Jong, A. F. M. Oosterbaan, W. A., and Van der Borg, K. (1992). Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34, 566577.Google Scholar
Van der Plicht, J. (1993). The Groningen radiocarbon calibration program. Radiocarbon 35, 231237.Google Scholar
Weidick, A. Oerter, H. Reeh, N. Thomsen, H. H., and Thoming, L. (1990). The recession of the Inland Ice margin during the Holocene climatic optimum in the Jakobshavn Isfjord area of West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 82, 389399.Google Scholar
Wood, R. D., and Imahori, K. (1965). “A Revision of the Characeae.” Verlag von J. Cramer, Weinheim.Google Scholar