Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-10T01:30:09.249Z Has data issue: false hasContentIssue false

The glaciogenic origin of the Pleistocene calcareous dust in Argentina on the basis of field, mineralogical, textural, and geochemical analyses

Published online by Cambridge University Press:  30 August 2018

Thea Vogt*
Affiliation:
Friedrichstrasse 3, D-77694 Kehl, Germany
Norbert Clauer
Affiliation:
Institut de Physique du Globe de Strasbourg, Université de Strasbourg, F-67084 Strasbourg, France
Isabelle Techer
Affiliation:
Equipe Associée 7352 CHROME, Université de Nimes, F 30021 Nimes, France
*
*Corresponding author at: Friedrichstrasse 3, D-77694 Kehl, Germany. E-mail address: thea.vogt@gmail.com (T. Vogt).

Abstract

Calcareous dust occurs in Argentina as layers and pockets closely associated with Pleistocene deposits and periglacial features from southernmost Patagonia to at least the Mendoza Precordillera and has been traditionally interpreted as a soil horizon resulting from postdepositional pedogenesis during interglacials. Detailed field and microscopic observations and sedimentological and geochemical analyses of more than 100 samples collected from lower to upper Pleistocene deposits between 51°S and 33°S and from near sea level to 2800 m asl allow us to interpret the dust as synchronous with the host sediment. All observations and analyses lead us to conclude that: (1) the cryogenic morphology and the chemical signatures of the calcite component show that the dust is glaciogenic, (2) the dust was carried by southeasterly Antarctic winds, and (3) it was deposited over most of southern and central Argentina. Field observations, geomorphic evidence, and radiocarbon dates suggest that the dust was deposited during several Pleistocene glacial episodes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham de Vazquez, E.M., Garleff, K., 1985. Fossil periglacial phenomena in the central and southern part of the Piemont of Mendoza Province, Argentina. Zentralblatt Geologie Paläontologie, Teil I: Allgemeine,Angewandte, Regionale und Historische Geologie 1, 17091719.Google Scholar
Ackert, R.P. Jr., 2009. Palaeoclimate: Patagonian dust machine. Nature Geoscience 2, 244245.Google Scholar
Adolphe, J.P., 1966. Etude de quelques cristallisations provoquées par gel expérimental. Cahiers Géologiques 79–80, 911917.Google Scholar
Adolphe, J.P., 1972. Obtention d’encroûtements carbonatés par gel expérimental. Comptes-Rendus de l’Académie des Sciences de Paris 274, 11391142.Google Scholar
Albani, S., Mahowald, N., Delmonte, B., Maggi, V., 2010. Changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates: modelling concentration, size and provenance. Geophysical Research Abstracts 12, EGU2010-4680, 2010, EGU General Assembly Vienna 2-7 May, 2010. Google Scholar
Albani, S., Mahowald, N., Delmonte, B., Maggi, V., Winckler, G., 2011. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Climate Dynamics 38, 17311755.Google Scholar
Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S., Mosola, A.B., 2002. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Science Reviews 21, 4970.Google Scholar
Anderson, S.P., Drever, J.I., Humphrey, N.F., 1997. Chemical weathering in glacial environments. Geology 25, 399402.Google Scholar
Andres, M.S., Bernasconi, S.M., McKenzie, J.A., Roht, U., 2003. Southern Ocean deglacial record supports global Younger Dryas. Earth and Planetary Science Letters 216, 515524.Google Scholar
Aniya, M., 2013. Holocene glaciations of Hielo Patagónico (Patagonia Icefield), South America: a brief review. Geochemical Journal 47, 97105.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Basile, I., Grousset, F.E., Revel, M., Petit, J.R., Biscaye, P.E., Barkov, N., 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth and Planetary Science Letters 146, 573589.Google Scholar
Benn, D.I., Clapperton, C.M., 2000. Glacial sediment–landform associations and paleoclimate during the Last Glaciation, Strait of Magellan, Chile. Quaternary Research 54, 513523.Google Scholar
Berner, R.A., 1968. Calcium carbonate concretions formed by decomposition of organic matter. Science 159, 195197.Google Scholar
Blisniuk, P.M., Stern, L.A., Chamberlain, C.P., Idleman, B., Zeitler, P.K., 2005. Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters 230, 125142.Google Scholar
Bockheim, J., Coronato, A., Rabassa, J., Ercolano, B, Ponce, J., 2009. Relict sand wedges in southern Patagonia and their stratigraphic and paleo-environmental significance. Quaternary Science Reviews 28, 11881199.Google Scholar
Bockheim, J., Douglass, D.C., 2006. Origin and significance of calcium carbonate in soils of southwestern Patagonia. Geoderma 136, 751762.Google Scholar
Borromei, A.Z., Coronato, A., Quattrocchio, M., Rabassa, J., Grill, S., Roig, C., 2007. Late Pleistocene–Holocene environments in Valle Carbajal, Tierra del Fuego, Argentina. Journal of South America Earth Sciences 23, 321335.Google Scholar
Bouza, P.J., del Valle, H.F., Imbellone, P.A., 1993. Micromorphological, physical, and chemical characteristics of soil crust types of the central Patagonia region, Argentina. Arid Soil Research and Rehabilitation 7, 355368.Google Scholar
Bouza, P.J., Simón, M., Aguilar, J., del Valle, H., Rostagno, M., 2007. Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina. Geoderma 139, 3850.Google Scholar
Bukowska-Jania, E., 2007. The role of glacier system in migration of calcium carbonate on Svalbard. Polish Polar Research 28, 137155.Google Scholar
Buschiazzo, D.E., Martínez, H.M., Peinemann, N., 1987. Condiciones paleoclimáticas deducidas de indicatores pedológicos y geomorfológicos en la región pampeana central (Argentina). Zentralblatt für Geologie und Paläontologie 1, 875883.Google Scholar
Cailleux, A., 1965. Quaternary secondary chemical deposition in France. Geological Society of America Special Paper 84, 125138.Google Scholar
Cailleux, A., 1967. Actions du vent et du froid entre le Yukon et Anchorage, Alaska. Geografiska Annaler 49, 145154.Google Scholar
Cailleux, A., 1968. Periglacial of McMurdo Strait (Antarctica). Biuletyn Peryglacjalny 17, 5790.Google Scholar
Caillon, N., Severinghaus, P., Jouzel, J., Barnola, J.-M., Kang, J., Lipenkov, V.Y., 2003. Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science 299, 17281731.Google Scholar
Carneiro Filho, A., Schwartz, D., Tatumi, S.H., Rosique, T., 2002. Amazonian paleodunes provide evidence for drier climate phases during the Late Pleistocence–Holocene. Quaternary Research 58, 205209.Google Scholar
Cavallotto, J.L., Violante, R.A, Hernández-Molina, F.J., 2011. Geological aspects and evolution of the Patagonian continental margin. In: Palaeogeography and Palaeoclimatology of Patagonia: Implications for Biodiversity. Special issue, Biological Journal of the Linnean Society 103, 346–362.Google Scholar
Caviedes, C.N., Paskoff, R., 1975. Quaternary glaciations in the Andes of north-central Chile. Journal of Glaciology 14, 155170.Google Scholar
Cerling, T.E., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records. Geophysical Monograph Series 78. Wiley, New York, pp. 217231.Google Scholar
Clapperton, C.M., 1993aNature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.Google Scholar
Clapperton, C.M., 1993bQuaternary Geology and Geomorphology of South America. Elsevier, Amsterdam.Google Scholar
Clapperton, C.M., 1994. The quaternary glaciation of Chile: a review. Revista Chilena de Historia Natural 67, 369383.Google Scholar
Clapperton, C.M., Clayton, J.D., Benn, D.I., Marden, C.J., Argollo, J., 1997. Late Quaternary glacier advances and palaeolake highstands in the Bolivian Altiplano. Quaternary International 38–39, 4959.Google Scholar
Clark, I.D., Lauriol, B., 1992. Kinetic enrichment of stable isotopes in cryogenic calcites. Chemical Geology 102, 217228.Google Scholar
Clayton, J.D, Clapperton, C.M., 1995. The last glacial cycle and paleolake synchrony in the southern Bolivian Altiplano: Cerro Azanaques case study. Bulletin de l’Institut Français d’Etudes Andines 24, 563571.Google Scholar
Cofaigh, Ó.C., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., Hogdson, D.A., et al., 2014. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. In: Bentley, M.J., Ó Cofaigh, C., Anderson, J.B. (Eds.), Reconstruction of Antarctic Ice Sheet Deglaciation (RAISED). Special issue, Quaternary Science Reviews 100, 87110.Google Scholar
Compagnucci, R.H., 2011. Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios. Biological Journal of the Linnean Society 103, 229249.Google Scholar
Corte, A.E., 1962. Vertical migration of particles in front of moving freezing plane. Journal of Geophysical Research 67, 10851090.Google Scholar
Corte, A.E., 1963. Relationship between four ground patterns, structure of the active layer and type and distribution of ice in permafrost. Biuletyn Peryglacjalni 12, 790.Google Scholar
Corte, A.E., 1968. Informe preliminar del progreso efectuado en el estudio de las estructuras de crioturbación pleistocenas fósiles en la provincia de Santa Cruz. In: III Jornadas Geológicas Argentinas Comodoro Rivadavia, 20-30 November 1966, 2, 9–17.Google Scholar
Corte, A.E., Beltramone, C., 1984. Edad de la estructuras geocryogénicas de Puerto Madryn (Chubut). 2da Reuniòn del Grupo Periglacial Argentino, IANIGLA/CRICYT/CONICET, proceedings of a meeting held in Mendoza 1984, 6672.Google Scholar
Crosta, X., 2009. Antarctic sea ice history, Late Quaternary. In: Gornitz, V. (Ed.), Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Berlin, pp. 2123.Google Scholar
Crosta, X., Pichon, J.-J., Burckle, L.H., 1998. Application of modern analog technique to marine Antarctic diatoms: reconstruction of maximum sea-ice extent at the Last Glacial Maximum. Paleoceanography 13, 284297.Google Scholar
Crouvi, O., Enzel, Y., Amit, R., Gillespie, A., 2010. Intensive winds during glacial periods increased sand dune activity and loess deposition. American Geophysical Union Fall Meeting, San Francisco 13-17 December 2010, abstract #PP13A -1490.Google Scholar
Delmas, R.J., Petit, J.R., 1994. Present Antarctic aerosol composition: a memory of Ice-Age atmospheric dust? Geophysical Research Letters 21, 879882.Google Scholar
Delmonte, B., 2003. Quaternary variations and origin of continental dust in East Antarctica. Tesi Scienze Università Siena. tel.archives-ouvertes.fr/tel-00701343.Google Scholar
Delmonte, B., Andersson, P.S., Baroni, C., Petit, J.R., Hansson, M., Albani, S., Maggi, V., Frezzotti., M., 2011. Mineral dust in East Antarctica: Assessing the contribution from remote and local dust sources from the last glacial maximum to present-day. XVIII INQUA Bern 21-27 July 2011, Mineral Dust: a product and agent of Quaternary climate change, Abstract 783.Google Scholar
Delmonte, B., Andersson, P.S., Schöberg, H., Hansson, M., Petit, J.-R., Delmas, R., Gaiero, D.M., Maggi, V., Frezzotti, M., 2010. Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quaternary Science Reviews 29, 256264.Google Scholar
Delmonte, B., Basile-Doelsch, I., Petit, J.-R., Maggi, V., Revel-Rolland, M., Michard, A., Jagoutz, E., Grousset, F., 2004. Comparing the Epica and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods. Earth-Science Reviews 66, 6387.Google Scholar
Delmonte, B., Petit, J.R., Basile-Doelsch, I., Jagoutz, E., Maggi, V., 2007. 6. Late Quaternary interglacials in East Antarctica from ice-core dust records. In: Sirocko, F., Claussen, M., Litt, T., Sanchez-Goñi, M.F. (Eds.), The Climate of Past Interglacials. Developments in Quaternary Science 7. Elsevier, Amsterdam, pp. 5373.Google Scholar
del Valle, H., Beltramone, C., 1987. Morfología de la accumulaciones calcáreas en algunos paleosuelos de Patagónia Oriental (Chubut). Ciencia del Suelo 5, 7787.Google Scholar
Ek, C., Pissart, A., 1965. Dépôt de carbonate de calcium par congélation et teneur en bicarbonate des eaux résiduelles. Comptes-Rendus Académie des Sciences de Paris 260, 929.Google Scholar
Espizua, L.E., 2004. Pleistocene glaciations in the Mendoza Andes, Argentina. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 3. Elsevier, Amsterdam 6973.Google Scholar
Espizua, L.E., Bigazzi, G., 1998. Fission-track dating of the Punta de Vacas Glaciation in the Rio Mendoza valley, Argentina. Quaternary Science Reviews 17, 755760.Google Scholar
Fairchild, I.J., Killawee, J.A., Spiro, B., Tison, J.L., 1996. Calcite precipitates formed by freezing processes: kinetic controls on morphology and geochemistry. Bottrell, S. (ed.), Proceedings of the 4th International Symposium on the Geochemistry of the Earth's Surface, Ilkley, Yorkshire, 22-28 July 1996, 178–183. Wiley.Google Scholar
Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Wegner, A., Udisti, R., Becagli, S., et al., 2007. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth and Planetary Science Letters 260, 340354.Google Scholar
Flower, B.P., Kennett, J., 1994. The middle Miocene climatic transition: East Antarctc ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108, 537555.Google Scholar
Gaiero, D., Depetris, P., Probst, J.L., Bidart, S., Lelyter, L., 2004. The signature of river- and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for paleoclimatic interpretations. Earth and Planetary Science Letters 219/3-4, 357–376. https://doi.org/10.1016/S0012-821X(03)00686-1 Google Scholar
Gaiero, D., 2007. Dust provenance in Antarctic ice during glacial periods: from where in southern South America? Geophysical Research Letters, 34. http://dx.doi.org/10.1029/2007GL030520.Google Scholar
Gaiero, D.M., Brunet, F., Probst, J.L., Depetris, P.J., 2007. A uniform isotopic and chemical signature of dust exported from Patagonia: rock sources and occurrence in southern environments. Chemical Geology 238, 107120.Google Scholar
Galloway, J.P., 1985. Fossil ice-wedges in Patagonia and their palaeoclimatic significance. Zeitschrift für Geomorphology 29, 389396.Google Scholar
Garcia, J.L., Kaplan, M., Hall, B.L., Schaefer, J.M., Vega, R., Schwartz, R., Finkel, R.C., 2012. Glacier expansion in southern Patagonia throughout the Antarctic Cold Reversal. Geology 40, 859862.Google Scholar
Gersonde, R., Crosta, X., Abelmann, A., Armand, L., 2005. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quaternary Science Reviews 24, 869896.Google Scholar
Glasser, N.F., Harrison, S., Winchester, V., Aniya, M., 2004. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, 79101.Google Scholar
Graham, A.G.C., Larter, R.D., Gohl, K., Dowdeswell, J.A., Hillenbrand, C.-D., Smith, J.A., Evans, J., Kuhn, G., Deen, T., 2010. Flow and retreat of the Late Quaternary Pine Island-Thwaites palaeo-ice stream, West Antarctica. Journal of Geophysical Research 115, F03025.Google Scholar
Grosso, S.A., Corte, A.E., 1989. Pleistocene ice wedge casts at 34°S eastern Andes piedmont, South-West of South America. Geografiska Annaler A 71, 125137.Google Scholar
Guilderson, T., Burckle, L., Hemming, S., Peltier, W.R., 2000. Late Pleistocene sea level variations derived from the Argentine Shelf. Geochemistry Geophysics Geosystems, 1. http://dx.doi.org/10.1029/2000GC000098.Google Scholar
Haberzettl, T., Corbella, H., Fey, M., Janssen, S., Lücke, A., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G.-H., Wille, M., Wulf, S., Zolitschka, B., 2007. Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene 17, 297310.Google Scholar
Hallet, B., 1975. Subglacial silica deposits. Nature 254, 682683.Google Scholar
Harrington, H.J., 1941. Investigaciones geologicas en las Sierras de Villavicencio y Mal Pais. Provincia de Mendoza. Boletin Direccion de Minas y Geologia 49. Buenos Aires, 54 p.Google Scholar
Heusser, C.J., 1989. Late Quaternary vegetation and climate of southern Tierra del Fuego. Quaternary Research 31, 396406.Google Scholar
Hulton, N.R.J., Purves, R.S., McCulloch, R.D., Sugden, D.E., Bentley, M.J., 2002. The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21, 233241.Google Scholar
Ingólfsson, O., 2004. Quaternary glacial and climate history of Antarctica. In:: Ehlers, J., Gibard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 3. Elsevier, Amsterdam, pp. 343.Google Scholar
Inskeep, W.P., Bloom, P.R., 1986. Kinetics of calcite precipitation in the presence of water soluble organic ligands. Soil Science Society of America 50, 11671172.Google Scholar
Iriondo, M.H., Garcia, N.O., 1993. Climatic variation in the Argentine plains during the last 18,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 209220.Google Scholar
Iriondo, M.H., Kröhling, D.M., 1995. El sistema eólico pampeano. Comunicaciones Museo Provincial Ciencias Naturales “Florentino Ameghino” (N.S.), Santa Fé 5/1, 45pp.Google Scholar
Jouzel, J., Barkov, N.I., Barnola, J.M., Genthon, C., Korotkevitch, Y.S., Kotlyakov, V.M., Legrand, M., et al., 1989. Global change over the last climatic cycle from the Vostok ice core record (Antarctica). Quaternary International 2, 1524.Google Scholar
Kaiser, J., Lamy, F., Hebbeln, D., 2005. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 20, PA4009.Google Scholar
Kaiser, J., Lamy, F., 2010. Links between Patagonian ice sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2). Quaternary Science Reviews 29, 1464–1471 https://doi.org/10.1016/j.quascirev.2010.03.005 Google Scholar
Kim, J.-H., Schneider, R.R., Mulitza, S., Müller, P.J., 2003. Reconstruction of SE trade-wind intensity based on sea-surface temperature gradients in the Southeast Atlantic over the last 25 kyr. Geophysical Research Letters 30, 2144.Google Scholar
Klappa, C.F., 1979. Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. Journal of Sedimentary Petrology 49, 955968.Google Scholar
Kohfeld, K.E., Harrison, S.P., 2001. DIRTMAP: the geological record of dust. Earth Science Review 5/1-34, 81-114. doi: 10.1016/S0012-8252(01)00042-3.Google Scholar
Konishchev, V.N., 1982. Characteristics of cryogenic weathering in the permafrost zone of the European USSR. Arctic and Alpine Research 14, 261265.Google Scholar
Kotlyakov, V.M., Nikolayev, V.I., Korotkevich, Y.S., Petrov, V.N., Barkov, N.I., Lipenkov, V.Y., Lorius, C., et al., 1991. Global changes over the last climatic cycle from Antarctic ice core records. In: Glaciers-Oceans-Atmosphere Interactions (Proceedings of the International Symposium held at St. Petersburg, September 1990). IAHS Publication 208. International Association of Hydrological Sciences, Wallingfor, U.K., pp. 15–27.Google Scholar
Kronberg, B.I., Benchimol, R.E., 1992. Geochemistry and geochronology of surficial Acre basin sediments (western Amazonia): key information for climate reconstruction. Acta Amazonica 22, 5169.Google Scholar
Kull, C., Hänni, F., Grosjean, M., Veit, H., 2003. Evidence of an LGM cooling in NW-Argentina (22°S) derived from a glacier climate model. Quaternary International 108, 311.Google Scholar
Latrubesse, E.M., Ramonell, C.G., 1994. A climatic model for southwestern Amazonia in Last Glacial times. Quaternary International 21, 163169.Google Scholar
Lebron, I., Suarez, D., 1996. Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25°C and pH>7.5. Geochimica et Cosmochimica Acta 60, 27652776.7.5.+Geochimica+et+Cosmochimica+Acta+60,+2765–2776.>Google Scholar
Legrand, M.R., Lorius, C., Barkov, N.I., Petrov, V.N., 1988. Vostok (Antarctica) ice core: atmospheric chemistry changes over the last climatic cycle (160,000 years). Atmospheric Environment 22, 317331.Google Scholar
Li, F., Ramaswamy, V., Ginoux, P., Broccoli, A.J., Delworth, T., Zeng, F., 2010. Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: Sensitivity studies on plausible causes. Journal of Geophysical Research 115, 1–14 https://doi.org/10.1029/2010JD014791 Google Scholar
Li, F., Ginoux, P., Ramaswamy, V., 2008. Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: contribution of major sources. Journal of Geophysical Research 113, D10207.Google Scholar
Liu, W., Lu, J., Leung, L.R., Xie, S.P., Liu, Z., Zhu, J., 2015. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum. Climate Dynamics 45, 31573168.Google Scholar
Magaritz, M., Kaufman, A., Yaalon, D.H., 1981. Calcium carbonate nodules in soils: 18O/16O and 13C/12C ratios and 14C contents. Geoderma 5, 157172.Google Scholar
MARGO Project Members. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience Letters 2, 127132.Google Scholar
Mark, B.G., Seltzer, G., Rodbell, D.T., 2004. Late Quaternary glaciations of Ecuador, Peru and Bolivia. In: Ehlers, J., Gibard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 3. Elsevier, Amsterdam, pp. 151163.Google Scholar
Markgraf, V., 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southermost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102, 5368.Google Scholar
Marsh, N.D., Ditlevsen, P.D., 1997. Observation of atmospheric and climate dynamics from a high resolution ice core record of a passive tracer over the last glaciation. Journal of Geophysical Research 102, 1121911224.Google Scholar
Martínez, O.A., Kutschker, A., 2011. The “Rodados Patagónicos” (Patagonian shingle formation) of eastern Patagonia: environmental conditions of gravel sedimentation. In: Palaeogeography and Palaeoclimatology of Patagonia: Implications for Biodiversity. Special issue, Biological Journal of the Linnean Society103, 336–345.Google Scholar
McCulloch, R.D., Bentley, M.J., Purves, R.S., Hulton, N.R.J., Sugden, D.E., Clapperton, C.M., 2000. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15, 409417.Google Scholar
Mercer, J.H., 1968. Variations of some Patagonian glaciers since the Late–Glacial. American Journal of Science 266, 91109.Google Scholar
Mercer, J.H., 1983. Cenozoic glaciation in the Southern Hemisphere. Annual Review of Earth and Planetary Science 11, 99132.Google Scholar
Mercer, J.H., Laugénie, C.A., 1973. Glacier in Chile ended a major readvance about 36,000 years ago: some global comparisons. Science 182, 11171119.Google Scholar
Mercer, J.H., Sutter, F., 1982. Late Miocene-Earliest Pliocene glaciation in Southern Argentina. Implications for global ice-sheet history. Palaeogeography, Palaoeoclimatology, Palaeoecology 38, 185206.Google Scholar
Moon, H.P., 2008. III. The geology and physiography of the Altiplano of Peru and Bolivia. Transactions of the Linnean Society London. 3rd series, 6, 2743.Google Scholar
Moreno, P.I., Kaplan, M.R., François, J.P., Villa-Martínez, R., Moy, C.M., Stern, C.R., Kubik, P.W., 2009. Renewed glacial activity during the Antarctic cold reversal and persistence of cold conditions until 11.5 ka in southwestern Patagonia. Geology 937, 375378.Google Scholar
Murray, D.S., Carlson, A.E., Singer, B.S., Anslow, F.S., He, F., Caffee, M.W., Marcott, S.A., Liu, Z., Otto-Bliesner, B.N., 2012. Northern Hemisphere forcing of the last deglaciation in southern Patagonia. Geology 40, 631634.Google Scholar
Ochsenius, C., 1985. Pleniglacial desertization, large-animal mass extinction and Pleistocene–Holocene boundary in South America. Revista de Geografia Norte Grande 12, 3547.Google Scholar
Paez, M.M., Prieto, A.R., Mancini, M.V., 1999. Fossil pollen from Los Toldos locality: a record of the Late-glacial transition in the Extra-Andean Patagonia. Quaternary International 53–54, 6975.Google Scholar
Paskoff, R., 1967. Los cambios climaticos Plio-Cuaternarios en la franja costera de Chile semiarido. Boletin de la Asociacion de Geografos de Chile 1, 1113.Google Scholar
Pendall, E., Markgraf, V., White, J.W.C., Dreier, M., 2001. Multiproxy record of Late Pleistocene-Holocene climate changes from a peat bog in Patagonia. Quaternary Research 55, 168178.Google Scholar
Pérez-Alberti, A., Valcárcel-Diaz, M., Carrera-Gómez, P., Coronato, A., Rabassa, J., 2005. Late Pleistocene ice-wedge casts from Tierra del Fuego, Argentina. In: Second European Conference on Permafrost, Potsdam, Germany, June 12–16, 2005, abstracts 19–20.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Ponce, J.F., Rabassa, J., Coronato, A., Borromei, A.M., 2011. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. In: Palaeogeography and Palaeoclimatology of Patagonia: Implications for Biodiversity. Special issue, Biological Journal of the Linnaean Society 103, 363–379.Google Scholar
Quade, J., Chivas, A.R., McCulloch, M.T., 1995. Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology 113, 103117.Google Scholar
Rabassa, J., Coronato, A., Salemme, M., 2005. Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South America Earth Sciences 20, 81103.Google Scholar
Ramos, V.A., Cortes, J.M., 1993. Time constraints of the Andean deformation along the Central Andes of Argentina and Chile (32°–33°S Latitude). In: Second ISAG, Oxford, U.K., September 21–23, 1993, pp. 233–236.Google Scholar
Reader, I.M.C., Fung, I., McFarlane, N., 2012. The mineral dust aerosol cycle during the Last Glacial Maximum. Journal of Geophysical Research: Atmospheres 104, 93819398.Google Scholar
Ribolini, A., Bini, M., Consoloni, I., Isola, I., Pappalardo, M., Zanchetta, G., Fucks, E., Panzeri, L., Martini, M., Terrasi, F., 2014. Late-Pleistocene wedge structures along the Patagonian coast (Argentina): chronological constraints and palaeo-environmental implications. Geografiska Annaler A 96, 161176.Google Scholar
Salomons, W., Mook, W.G., 1976. Isotope geochemistry of carbonate dissolution and reprecipitation in soils. Soil Science 122, 1524.Google Scholar
Sayago, J.M., 1995. The Argentine neotropical loess: an overview. Quaternary Science Reviews 14, 755766.Google Scholar
Sayago, J.M., Collantes, M.M., Karlson, A., Sanabria, J., 2001. Genesis and distribution of the Late Plelstocene and Holocene loess of Argentina: a regional approximation. Quaternary International 76–77, 247257.Google Scholar
Schwamborn, G., Fedorov, G., Ostanin, N., Schirrmeister, L., Andreev, A., El’gygytgyn Scientific Party. 2012. Depositional dynamics in the El’gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive. Climate of the Past 8, 18971911.Google Scholar
Servant, M., Maley, J., Turcq, B., Absy, M.-L., Brenac, P., Ledru, M.-P., 1993. Tropical forest changes during the late quaternary in African and South American lowlands. Global and Planetary Change 7(1–3), 2540.Google Scholar
Shi, N., Dupont, L.M., Beug, H.-J., Schneider, R., 2000. Southeast trade wind variations during the last 135 kyr: evidence from pollen spectra in eastern South Atlantic sediments. Earth and Planetary Science Letters 187, 311321.Google Scholar
Stuut, J.-B.W., Hebbeln, D., 2007. Antarctic timing of climate in the South-American subtropics. Geophysical Research Abstracts 9, 10369.Google Scholar
Stuut, J.-B.W., Lamy, F., 2004. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quaternary Research 62, 301309.Google Scholar
Stuut, J.-B.W., Prins, M.A., Schneider, R.R., Weltje, G.J., Jansen, J.H.F., Postma, G., 2002. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180, 221233.Google Scholar
Sugden, D.E., McCulloch, R.D., Bory, A.J.-M., Hei, A.S., 2009. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nature Geoscience 2, 281285.Google Scholar
Sylwan, C.A., 2001. Geology of the Golfo San Jorge Basin, Argentina. Journal of Iberian Geology 27, 123157.Google Scholar
Techer, I., Clauer, N., Vogt, T., 2014. Origin of calcareous dust in Argentinean Pleistocene periglacial deposits traced by Sr, C and O isotopic compositions, and REE distribution. Chemical Geology 380, 119132.Google Scholar
Thellier, C., Clauer, N., 1989. Strontium isotope evidence for soil-solution interactions during evaporation experiments. Chemical Geology, Isotope Geoscience Section 73, 299306.Google Scholar
Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006. Shifted Westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005.Google Scholar
Tonni, E.P., Cione, A.L., Figini, A.J., 1999. Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 147, 257281.Google Scholar
Tripaldi, A., Forman, S.L., 2007. Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 300320.Google Scholar
Tripaldi, A., Forman, S.L., 2016. Eolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina. Quaternary Science Reviews1 39, 7793.Google Scholar
Turk, J.K., Graham, R.C., 2011. Distribution and properties of vesicular horizons in the western United States. Soil Science Society of America Journal 75, 14491461.Google Scholar
Urien, C.M., Silva Martins, L.R., da Rosa Martins, I., 1993. Glaciomarine sediments from Southern Argentina continental shelf. Preliminary note. Pesquisas 20, 96100.Google Scholar
Violante, R.A., Parker, G., Cavallotto, J.L., 2001. Evolución de las llanuras costeras del este bonaerense entre la Bahía Samborombón y la laguna Mar Chiquita. Revista Asociación Geológica Argentina 56/1, 1–66. Google Scholar
Violante, R.A., Osterrieth, M.L., Borrelli, N., 2007. Evidences of subaerial exposure of the Argentine continental shelf during the Last Glacial Maximum. Quaternary International 167–168, 434.Google Scholar
Violante, R.A., Paterlini, C.M., Marcolini, S.I., Costa, I.P., Cavallotto, J.L., Laprida, C., Dragani, W., et al., 2014. The Argentine continental shelf: morphology, sediments, processes and evolution since the Last Glacial Maximum. Geological Society of London Memoirs 4, 5568.Google Scholar
Vogt, H., Vogt, T., Calmels, A.P., 2010. Influence of the post-Miocene tectonic activity on the geomorphology between Andes and Pampa Deprimida in the area of Provincia de La Pampa, Argentina. Geomorphology 121, 152166.Google Scholar
Vogt, T., 1977. Croûtes calcaires quaternaires de période froide en France méditerranéenne. Zeitschrift für Geomorphologie 21, 2636.Google Scholar
Vogt, T., 1989. Croûtes calcaires d’origine cryogénique. Zeitschrift für Geomorphologie, (Suppl.Bd) 75, 115135.Google Scholar
Vogt, T., 1990. Cryogenic physicochemical precipitations: iron, silica, calcium carbonate. Permafrost and Periglacial Processes 1, 283293.Google Scholar
Vogt, T., 1992. Western Anti-Atlas (Morocco) and Central Patagonia (Argentina) calcretes: the calcium carbonate origin. Zeitschrift für Geomorphologie. Suppl.Bd 84, 115127.Google Scholar
Vogt, T., Corte, A.E., 1996. Secondary precipitates in Pleistocene and present cryogenic environments (Mendoza Precordillera, Argentina, Transbaikalia, Siberia, and Seymour Island, Antarctica). Sedimentology 43, 5364.Google Scholar
Vogt, T., del Valle, H., 1994. Calcretes and cryogenic structures in the area of Puerto Madryn. Geografiska Annaler A 76, 5775.Google Scholar
Vogt, T., Larqué, P., 1998. Transformations and neoformations of clay in the cryogenic environment: examples from Transbaikalia (Siberia) and Patagonia (Argentina). European Journal of Soil Science 49, 367376.Google Scholar
Walter, H.J., Hegner, E., Diekmann, B., Kuhn, G., Rutgers van der Loeff, M., 2000. Provenance and transport of terrigenous sediment in the South Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence. Geochimica et Cosmochimica Acta 64, 38133827.Google Scholar
Weber, M.E., Kuhn, G., Sprenk, D., Rolf, C., Ohlwein, C., Ricken, W., 2012. Dust transport from Patagonia to Antarctica—a new stratigraphic approach from the Scotia Sea and its implications for the last glacial cycle. Quaternary Science Reviews 36, 177186.Google Scholar
Weischet, W., 1996. Regionale Klimatologie. Teil 1, Die Neue Welt Amerika, Neuseeland, Australien. Teubner, Stuttgart.Google Scholar
Wenzens, G., 2002. The influence of tectonically derived relief and climate on the extent of the last Glaciation east of the Patagonian ice fields (Argentina, Chile). Tectonophysics 345, 329344.Google Scholar
Windhausen, A., 1924. Líneas generales de la constitución geológica de la región situada al oeste del Golfo San Jorge. Boletin Academia Nacional de Córdoba 27, 167–120.Google Scholar
Young, M.H., McDonald, E., Caldwell, T.G., Benner, S., Meadows, D.G., 2004. Hydraulic properties of a desert soil chronosequence in the Mojave Desert, USA. Vadose Zone Journal 3, 956963.Google Scholar
Zák, K., Urban, J., Cílek, V., Hercman, H., 2004. Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model. Chemical Geology 206/1-2, 119–136, https://doi.org/10.1016/j.chemgeo.2004.01.012.Google Scholar
Zech, J., Wäger, P., Kull, C., Kubik, P., Veit, H., Zech, R., 2011. Glacier and climate reconstruction in the Las Leñas Valley (35°S), Central Argentina. In: XVIII INQUA Congress, “87 Pleistocene Glacial Chronologies and Paleoclimate Implications,” Bern, Switzerland, 2011, abstract 3412.Google Scholar
Zech, R., May, J.-H., Kull, C., Ilgner, J., Kubik, P.W., Veit, H., 2008. Timing of the late Quaternary glaciation in the Andes from 15 to 40° S. Journal of Quaternary Science 23, 635647.Google Scholar
Zech, R., Smith, J., Kaplan, M.R., 2009. Chronologies of the Last Glacial Maximum and its Termination in the Andes (~10–55°S) based on surface exposure dating. In, Past Climate Variability in South America and Surrounding Regions from the Last Glacial Maximum to the Holocene. Developments in Paleoenvironmental Research 14. Springer, Dordrecht, Netherlands, pp. 6187.Google Scholar
Zech, R., Zech, J., Kull, C., Kubik, P., Veit, H., 2011. Early last glacial maximum in the southern Central Andes reveals northward shift of the westerlies at 39 ka. Climate of the Past 7, 4146.Google Scholar
Zinck, J.A., Sayago, J.M., 1999. Loess paleosol sequence of La Mesada in Tucuman province, northwest Argentina characterization and paleoenvironmental interpretation. Journal of South America Earth Science 12, 293310.Google Scholar
Zinck, J.A., Sayago, J.M., 2001. Climatic periodicity during the late Pleistocene from a loess-paleosol sequence in Northwest Argentina. Quaternary International 77, 1116.Google Scholar
Zolitschka, B., Anselmetti, F.S., Ariztegui, D., Corbella, H., Francus, P., Lücke, A., Maidana, N.I., Ohlendorf, C., Schäbitz, F., Wastegard, S., 2013. Environment and climate of the last 51,000 years—new insights from the Potrok Aike maar lake Sediment Archive Drilling project (PASADO). Quaternary Science Reviews 71, 112.Google Scholar