Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T08:46:06.531Z Has data issue: false hasContentIssue false

Global variations in regional degradation rates since the Last Glacial Maximum mapped through time and space

Published online by Cambridge University Press:  01 April 2022

Risa D. Madoff*
Affiliation:
Harold Hamm School of Geology and Geological Engineering, University of North Dakota, 81 Cornell ST–STOP 8358, Grand Forks, North Dakota 58202-8358, USA
Jaakko Putkonen
Affiliation:
Harold Hamm School of Geology and Geological Engineering, University of North Dakota, 81 Cornell ST–STOP 8358, Grand Forks, North Dakota 58202-8358, USA
*
*Corresponding author at: Harold Hamm School of Geology and Geological Engineering, University of North Dakota, 81 Cornell ST–STOP 8358, Grand Forks, North Dakota58202-8358, USA. E-mail address: risa.madoff@und.edu (R.D. Madoff).

Abstract

Topographic diffusivity is an often-used metric of regolith mobility. It accounts for the collective effects of climate, substrate, fauna, flora, and other factors on hillslope degradation and is used to model natural lowering in landscapes. The present study assesses where temporal variations in diffusivity derived from known past climate fluctuations have occurred. We also determine where significant differences might result when modeling landscape degradation if a long-term constant diffusivity is applied instead of diffusivity that varies through time. A space-for-time substitution approach was implemented. Through use of a transfer function that correlates current diffusivities with air temperatures, we mapped the relative diffusivities globally at a 500 yr temporal resolution for 21 ka. The analyses spanned all land areas from the tropics to the poles with a spatial resolution of 3.70° latitude by 3.75° longitude using paleo-temperature data from the TraCE-21ka global paleoclimate model. The results show Arctic and subarctic regions with the highest relative maximum diffusivities and largest variance from current values. The results suggest strong surficial dynamics in the Arctic and subarctic regions driven by local and spatially transient deglaciation and long-term stability in the tropics that correlates with relatively stable climate there through the past 21 ka.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauch, H.A., Kassens, H., Erlenkeuser, H., Grootes, P.M., Thiede, J., 1999. Depositional environment of the Laptev Sea (Arctic Siberia) during the Holocene. Boreas 28, 194204.CrossRefGoogle Scholar
Beierle, B.D., Smith, D.G., Hills, L. V., 2003. Late Quaternary glacial and environmental history of the Burstall Pass area, Kananaskis Country, Alberta, Canada. Arctic, Antarctic and Alpine Research 35, 391398.CrossRefGoogle Scholar
Benson, C.W., Kaufman, D.S., McKay, N.P., Schiefer, E., Fortin, D., 2019. A 16,000-yr-long sedimentary sequence from Lakes Peters and Schrader (Neruokpuk Lakes), northeastern Brooks Range, Alaska. Quaternary Research 92, 609625.CrossRefGoogle Scholar
Birkeland, P.W., 1999. Soils and Geomorphology. OUP, Oxford.Google Scholar
Bradwell, T., Small, D., Fabel, D., Smedley, R.K., Clark, C.D., Saher, M.H., Louise Callard, S., et al. , 2019. Ice-stream demise dynamically conditioned by trough shape and bed strength. Science Advances 5. https://doi.org/10.1126/sciadv.aau1380.CrossRefGoogle ScholarPubMed
Brown, D.R.N., Brinkman, T.J., Bolton, W.R., Brown, C.L., Cold, H.S., Hollingsworth, T.N., Verbyla, D.L., 2020. Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Climate Change 162, 385404.CrossRefGoogle Scholar
Bull, W.B., 1991. Geomorphic Responses to Climate Change. Blackburn Press, Caldwell, New Jersey.Google Scholar
Collins, W.D., Blitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., et al. , 2006. The Community Climate System Model, version 3 (CCSM3). Journal of Climate 19, 21223143.CrossRefGoogle Scholar
Culling, W.E.H., 1960. Analytical theory of erosion. Journal of Geology 68, 336344.Google Scholar
Culling, W.E.H., 1965. Theory of erosion on soil-covered slopes. Journal of Geology 73, 230254.CrossRefGoogle Scholar
DiBiase, R.A., Whipple, K.X., 2011. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. Journal of Geophysical Research Earth Surface 116, 117.Google Scholar
Fernandes, N.F., Dietrich, W.E., 1997. Hillslope evolution by diffusive processes: the timescale for equilibrium adjustments. Water Resources Research 33, 13071318.CrossRefGoogle Scholar
Flowers, G.E., 2018. Hydrology and the future of the Greenland Ice Sheet. Nature Communications 9, 14.CrossRefGoogle ScholarPubMed
Godard, V., Tucker, G.E., Burch Fisher, G., Burbank, D.W., Bookhagen, B., 2013. Frequency-dependent landscape response to climatic forcing. Geophysical Research Letters 40, 859863.CrossRefGoogle Scholar
Hallet, B., Putkonen, J., 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937940.CrossRefGoogle ScholarPubMed
Hallet, B., Putkonen, J., Sletten, R., Potter, N., 2004. Permafrost process research in the United States since 1960. In: Gillespie, A.R., Porter, S.C., Atwater, B.F. (Eds.), The Quaternary Period in the United States. Elsevier, Amsterdam, pp. 127145.Google Scholar
Hanks, T.C., 2000. The age of scarplike landforms from diffusion-equation analysis. In: Noller, J.S., Sowers, J.M., Lettis, W.R. (Eds.), Quaternary Geochronology: Methods and Applications. American Geophysical Union, Washington, DC, pp. 313338.Google Scholar
Hanks, T.C., Bucknam, R.C., Lajoie, K.R., Wallace, R.E., 1984. Modification of wave-cut and faulting-controlled landforms. Journal of Geophysical Research Solid Earth 89, 57715790.CrossRefGoogle Scholar
He, F., 2011. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3. PhD Dissertation, University of Wisconsin-Madison.Google Scholar
Heimsath, A.M., Chappell, J., Spooner, N.A., Questiaux, D.G., 2002. Creeping soil. Geology 30, 111114.2.0.CO;2>CrossRefGoogle Scholar
Kaufman, D.S., Axford, Y., Anderson, R.S., Lamoureux, S.F., Schindler, D.E., Walker, I.R., Werner, A., 2012. A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska. Journal of Paleolimnology 48, 926. https://doi.org/10.1007/s10933-012-9607-4CrossRefGoogle Scholar
Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304, 16231627.CrossRefGoogle ScholarPubMed
Legates, D., 2014. Climate models and their simulation of precipitation. Energy and Environment 25, 11631175.CrossRefGoogle Scholar
Lewis, C.F.M., Teller, J.T., 2007. North American late-Quaternary meltwater and floods to the oceans: evidence and impact—introduction. Palaeogeography Palaeoclimatology Palaeoecology 246, 17.CrossRefGoogle Scholar
MacGregor, K.R., Riihimaki, C.A., Myrbo, A., Shapley, M.D., Jankowski, K., 2011. Geomorphic and climatic change over the past 12,900 yr at Swiftcurrent Lake, Glacier National Park, Montana, USA. Quaternary Research 75, 8090.CrossRefGoogle Scholar
Madoff, R.D., Putkonen, J., 2016. Climate and hillslope degradation vary in concert; 85 ka to present, eastern Sierra Nevada, CA, USA. Geomorphology 266, 3340.CrossRefGoogle Scholar
Martin, Y., 2000. Modelling hillslope evolution: linear and nonlinear transport relations. Geomorphology 34, 121.CrossRefGoogle Scholar
McIntyre, A., Moore, T.C., Andersen, B., Balsam, W., , A., Brunner, C., Cooley, J., et al. , 1976. The surface of the Ice-Age Earth. Science 191, 11311137.Google Scholar
Milner, A.M., Khamis, K., Battin, T.J., Brittain, J.E., Barrand, N.E., Füreder, L., Cauvy-Fraunié, S., et al. , 2017. Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences USA 114, 97709778.CrossRefGoogle ScholarPubMed
Molnar, P., England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 2934.CrossRefGoogle Scholar
Nash, D.B., 1984. Morphologic dating of fluvial terrace scarps and fault scarps near West Yellowstone, Montana. Geological Society of America Bulletin 95, 14131424.2.0.CO;2>CrossRefGoogle Scholar
Oehm, B., Hallet, B., 2005. Rates of soil creep, worldwide: weak climatic controls and potential feedback. Zeitschrift fur Geomorphologie N.F. 49, 353372.Google Scholar
O'Neal, M.A., 2006. The effects of slope degradation on lichenometric dating of Little Ice Age moraines. Quaternary Geochronology 1, 121128.CrossRefGoogle Scholar
Otto-Bliesner, B.L., Brady, E.C., Clauzet, G., Tomas, R., Levis, S., Kothavala, Z., 2006. Last glacial maximum and Holocene climate in CCSM3. Journal of Climate 19, 25262544.CrossRefGoogle Scholar
Owen, J.J., Amundson, R., Dietrich, W.E., Nishiizumi, K., Sutter, B., Chong, G., 2011. The sensitivity of hillslope bedrock erosion to precipitation. Earth Surface Processes and Landforms 36, 117135.CrossRefGoogle Scholar
Peltier, W.R., 2004. Global glacial isostasy and the surface of the ice-age earth: the ICE-5 G (VM2) model and GRACE. Annual Review of Earth and Planetary Science 32, 111149.CrossRefGoogle Scholar
Perron, J.T., 2017. Climate and the pace of erosional landscape evolution. Annual Review of Earth and Planetary Sciences 45, 561591.CrossRefGoogle Scholar
Pierce, K.L., Colman, S.M., 1986. Effect of height and orientation (microclimate) on geomorphic degradation rates and processes, late-glacial terrace scarps in central Idaho. Geological Society of America Bulletin 97, 869885.2.0.CO;2>CrossRefGoogle Scholar
Portenga, E.W., Bierman, P.R., 2011. Understanding earth's eroding surface with 10Be. GSA Today 21, 410.CrossRefGoogle Scholar
Prajith, A., Tyagi, A., John Kurian, P., 2018. Changing sediment sources in the Bay of Bengal: Evidence of summer monsoon intensification and ice-melt over Himalaya during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 511, 309318.CrossRefGoogle Scholar
Pruski, F.F., Nearing, M.A., 2002. Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resources Research 38, 111.CrossRefGoogle Scholar
Putkonen, J., Connolly, J., Orloff, T., 2008. Landscape evolution degrades the geologic signature of past glaciations. Geomorphology 97, 208217.CrossRefGoogle Scholar
Putkonen, J., O'Neal, M., 2006. Degradation of unconsolidated Quaternary landforms in the western North America. Geomorphology 75, 408419.CrossRefGoogle Scholar
Putkonen, J., Swanson, T., 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, 255261.CrossRefGoogle Scholar
Reilly, B.T., Bergmann, F., Weber, M.E., Stoner, J.S., Selkin, P., Meynadier, L., Schwenk, T., Spiess, V., France-Lanord, C., 2020. Middle to Late Pleistocene Evolution of the Bengal Fan: Integrating Core and Seismic Observations for Chronostratigraphic Modeling of the IODP Expedition 354 8° North Transect. Geochemistry, Geophys. Geosystems 21.CrossRefGoogle Scholar
Reiners, P.W., Ehlers, T.A., Mitchell, S.G., Montgomery, D.R., 2003. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 426, 645647.CrossRefGoogle ScholarPubMed
Richardson, P.W., Perron, J.T., Schurr, N.D., 2019. Influences of climate and life on hillslope sediment transport. Geology 47, 423426.CrossRefGoogle Scholar
Roering, J.J., Kirchner, J.W., Dietrich, W.E., 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research 35, 853870.CrossRefGoogle Scholar
Ruddiman, W.F., 2014. Earth's Climate: Past and Future. 3rd ed. Freeman, New York, NY.Google Scholar
Selby, M.J., 1993. Hillslope Materials and Processes. Oxford University Press, Oxford.Google Scholar
Simpson, G., Schlunegger, F., 2003. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport. Journal of Geophysical Research 108, 116.CrossRefGoogle Scholar
Skianis, G.A., Vaiopoulos, D., Evelpidou, N., 2008. Solution of the linear diffusion equation for modelling erosion processes with a time varying diffusion coefficient. Earth Surface Processes and Landforms 33, 14911501.CrossRefGoogle Scholar
Stansell, N.D., Rodbell, D.T., Abbott, M.B., Mark, B.G., 2013. Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quaternary Science Reviews 70, 114.CrossRefGoogle Scholar
Stein, R., Niessen, F., Dittmers, K., Levitan, M., Schoster, F., Simstich, J., Steinke, T., Stepanets, O.V., 2002. Siberian river run-off and Late Quaternary glaciation in the southern Kara Sea, Arctic Ocean: preliminary results. Polar Research 21, 315322.CrossRefGoogle Scholar
Tucker, G.E., Hancock, G.R., 2010. Modeling landscape evolution. Earth Surface Processes and Landforms 35, 2850.CrossRefGoogle Scholar
Valler, V., Brugnara, Y., Bronnimann, S., 2020. Assimilating monthly precipitation data in a paleoclimate data assimilation framework. Climate of the Past 16, 13091323.CrossRefGoogle Scholar
Wiedmer, M., Montgomery, D.R., Gillespie, A.R., Greenberg, H., 2010. Late Quaternary megafloods from Glacial Lake Atna, Southcentral Alaska, U.S.A. Quaternary Research 73, 413424.Google Scholar
Willenbring, J.K., Von Blanckenburg, F., 2010. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211214.CrossRefGoogle ScholarPubMed
Willett, S.D., Slingerland, R., Hovius, N., 2001. Uplift, shortening, and steady state topography in active mountain belts. American Journal of Science 301, 455485.CrossRefGoogle Scholar
Willmott, C. J. and Matsuura, K. (2001) Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1900 - 2010), http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html (accessed May 5, 2014).Google Scholar
Yeager, S.G., Shields, C.A., Large, W.G., Hack, J.J., 2006. The Low-Resolution CCSM3. American Meteorological Society 19, 25452566.Google Scholar
Zhang, Y., Chiessi, C.M., Mulitza, S., Zabel, M., Trindade, R.I.F., Hollanda, M.H.B.M., Dantas, E.L., Govin, A., Tiedemann, R., Wefer, G., 2015. Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas. Earth and Planetary Science Letters 432, 493500.CrossRefGoogle Scholar
Zhu, F., Emile-Geay, J., McKay, N.P., Hakim, G.J., Khider, D., Ault, T.R., Steig, E.J., Dee, S., Kirchner, J.W., 2019. Climate models can correctly simulate the continuum of global-average temperature variability. Proceedings of the National Academy of Sciences USA 116, 87288733.CrossRefGoogle ScholarPubMed