Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T22:27:51.636Z Has data issue: false hasContentIssue false

Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

Published online by Cambridge University Press:  31 January 2011

Ram Srinivasan
Affiliation:
Kentucky Energy Cabinet Laboratory, University of Louisville, P. O. Box 13015, Lexington, Kentucky 40512 and the Department of Metallurgical Engineering and Materials Science, University of Kentucky, Lexington, Kentucky 40506
Mary B. Harris
Affiliation:
Kentucky Energy Cabinet Laboratory, University of Louisville, P. O. Box 13015, Lexington, Kentucky 40512
Stanley F. Simpson
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
Robert J. De Angelis
Affiliation:
Department of Metallurgical Engineering and Materials Science, University of Kentucky, Lexington, Kentucky 40506
Burtron H. Davis
Affiliation:
Kentucky Energy Cabinet Laboratory, University of Louisville, P.O. Box 13015, Lexington, Kentucky 40512 and the Department of Metallurgical Engineering and Materials Science, University of Kentucky, Lexington, Kentucky 40506
Get access

Abstract

Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 °C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7–11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garvie, R. C.J. Phys. Chem. 69 (4), 1238 (1965).CrossRefGoogle Scholar
2Garvie, R. C. and Swain, M. V.J. Mater. Sci. 20, 1193 (1985).CrossRefGoogle Scholar
3Garvie, R. C. and Goss, M. F.J. Mater. Sci. 21, 1253 (1986).CrossRefGoogle Scholar
4Garvie, R. C.Hannink, R. H. and Pascoe, R. T.Nature, 258, 703 (1975).CrossRefGoogle Scholar
5Osendi, M. I.Moya, J. S.Serna, C. J. and Soria, J.J. Am. Ceram. Soc. 68 (3), 135 (1985).CrossRefGoogle Scholar
6Murase, Y. and Kato, E.J. Am. Ceram. Soc. 66 (3), 196 (1983).CrossRefGoogle Scholar
7Heuer, A. H. and Ruhle, M.Acta Metall. 33, 2101 (1985).CrossRefGoogle Scholar
8Chen, I. W. and Chiao, Y. H.Acta Metall. 31, 1627 (1983).CrossRefGoogle Scholar
9Davis, B. H.J. Am. Ceram. Soc. 67 (8), C168 (1984).Google Scholar
10Porter, D. L. and Heuer, A. H.J. Am. Ceram. Soc. 62 (5-6), 298 (1979).CrossRefGoogle Scholar
11Phillippi, C. M. and Mazdiyasni, K. S.J. Am. Ceram. Soc. 54 (5), 254 (1971).CrossRefGoogle Scholar
12Kermidas, V. G. and White, W. B.J. Am. Ceram. Soc. 57 (1), 22 (1974).CrossRefGoogle Scholar
13White, W. B.Mater. Res. Bull. 2 (3), 381 (1967).CrossRefGoogle Scholar
14Davis, B. H.Appl. Surf. Sci. 19, 200 (1984).CrossRefGoogle Scholar
15Coughlin, J. P. and King, E. G.J. Am. Chem. Soc. 72 (5), 2262 (1950).CrossRefGoogle Scholar
16Adam, J. and Cox, B.J. Nucl. Energy A 11 (1), 31 (1959).Google Scholar
17Srinivasan, R.Angelis, R. J. De, and Davis, B. H.J. Mater. Res. 1, 538 (1987).Google Scholar
18Ganesan, P. and Davis, B. H.Ind. Eng. Chem., Prod. Res. Dev. 18, 191 (1979).Google Scholar
19Livage, J.Doi, K. and Mazieres, C.J. Am. Ceram. Soc. 51 (6), 349 (1968).CrossRefGoogle Scholar
20Whitney, E. D.J. Am. Ceram. Soc. 53 (12), 697 (1970).CrossRefGoogle Scholar
21Torralvo, M. J.Alario, M. A. and Soria, J.J. Catal. 86 (2), p473 (1984).CrossRefGoogle Scholar
22Rijnten, H. Th.Formation, Preparation and Properties of Hydrous Zirconia in Physical Chemistry and Aspects of Adsorbents and Catalysts, edited by Linsen, B. G. (Academic, New York, 1970), pp. 315372.Google Scholar
23Yuranova, L. T.Komissarava, L. N. and Plyushchev, V. E.Russ. J. Inorg. Chem. (English Ed.) 7 (5), 546 (1962).Google Scholar
24Blesa, M. A.Maroto, A. J. G.Passaggio, S. I.Figliolia, N. E. and Rigotti, G.J. Mater. Sci. 20, 46Q1 (1985).CrossRefGoogle Scholar
25Baes, C. F. Jr. , and Mesmer, R. E.The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
26Kraus, K. A. and Dam, J. R. in The Transuranium Elements, edited by Seaborg, G. T.Katz, J. J. and Manning, W. M. (McGraw-Hill, New York, 1949), Vol. IV-14B, pp. 466478 and 528.Google Scholar
27Copley, D. B. and Tyree, S. Y. Jr ., Inorg. Chem. 7 (7), 1472 (1968).CrossRefGoogle Scholar
28Shekaand, I. A.Pevzner, Ts. V.Russ. J. Inorg. Chem. 5 (10), 1119 (1960).Google Scholar
29Clearfield, A. and Vaughan, P. A.Acta Crystallogr. Org. 9 (7), 555 (1956).CrossRefGoogle Scholar
30Muha, G. M. and Vaughan, P. A.J. Chem. Phys. 33 (1), 194 (1960).CrossRefGoogle Scholar