Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T13:39:32.999Z Has data issue: false hasContentIssue false

An enhanced rate of the high-Tc phase formation in the Bi–Ca–Sr–Cu–O superconductor by the two-step reaction and rapid heating

Published online by Cambridge University Press:  31 January 2011

Hyun M. Jang
Affiliation:
Department of Materials Science and Engineering, Pohang Institute of Science and Technology (POSTECH), Pohang 790–600, Republic of Korea
Jong H. Moon
Affiliation:
Department of Materials Science and Engineering, Pohang Institute of Science and Technology (POSTECH), Pohang 790–600, Republic of Korea
Hyun J. Shin
Affiliation:
Research Institute of Industrial Science and Technology (RIST), Pohang 790–600, Republic of Korea
Get access

Abstract

An alternative synthetic approach was attempted for the fabrication of the Bi–Ca–Sr–Cu oxide superconductor. In this approach a mixed Sr–Ca–Cu oxide powder was first formed, and the resulting powder was subsequently reacted with Bi2O3. With this reaction scheme, problems associated with the low reactivity of CuO and SrCO3 can be partially removed by converting the mixed oxide/carbonate precursors to the reactive Sr–Ca–Cu compound. An enhanced rate of formation of the high-Tc (110 K) phase was observed in the two-step reaction, and this was explained in terms of the low activation free energy path for the formation of the high-Tc phase, which increased the decomposition rate of the remnant CuO. Under the condition of rapid heating, the formation of the high-Tc phase in the one-step reaction was expedited by the Cu-rich liquid phase. However, the liquid phase caused the formation of an insulating layer between the superconducting grains in spite of its catalytic activity in the high-Tc phase formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar
2Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B (Condensed Matter) 68, 421 (1987).CrossRefGoogle Scholar
3Hazen, R. M., Prewitt, C. T., Angel, R. J., Ross, N. L., Finger, L. W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechtold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).Google Scholar
4Tarascon, J. M., Le Page, Y., Greene, L. H., Bagley, B. G., Barboux, P., Hwang, D. M., Hull, G. W., McKinnon, W. R., and Giroud, M., Phys. Rev. B 38, 2504 (1988).CrossRefGoogle Scholar
5Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G., Le Page, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
6Hetherington, C. J. D., Ramesh, R., O'keefe, M. A., Kilaas, R., Thomas, G., Green, S. M., and Luo, H. L., Appl. Phys. Lett. 53, 1016 (1988).CrossRefGoogle Scholar
7Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).Google Scholar
8Toshihisa, T., Tanaka, Y., Fukutomi, M., Jikihara, K., Machida, J., and Maeda, H., Jpn. J. Appl. Phys. 27, L1652 (1988).Google Scholar
9Kijima, N., Endo, H., Tsuchiya, J., Kijima, N., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L821 (1988).Google Scholar
10Nobumasa, H., Shimizu, K., Kitano, Y., and Kawai, T., Jpn. J. Appl. Phys. 27, L846 (1988).CrossRefGoogle Scholar
11Komatsu, T., Sato, R., Hirose, C., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L2293 (1988).CrossRefGoogle Scholar
12Asthana, A., Han, P. D., Chang, L., and Payne, D. A., Mater. Lett. 8, 286 (1989).CrossRefGoogle Scholar
13Inone, O., Adachi, S., and Kawashima, S., Jpn. J. Appl. Phys. 27, L347 (1988).CrossRefGoogle Scholar
14Tsuchiya, J., Endo, H., Kizima, N., Sumiyama, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 28, L1918 (1989).Google Scholar
15Muromachi, E. T., Uchida, Y., Matsui, Y., Onoda, M., and Kato, K., Jpn. J. Appl. Phys. 27, L556 (1988).Google Scholar
16Zandbergen, H. W., Huang, Y. K., Menken, M. J. V., Li, J. N., Kadowaki, K., Menovsky, A. A., van Tendeloo, G., and Amelinckx, S., Nature 332, 620 (1988).Google Scholar
17Baivin, J. C., Trehoux, J., and Thomas, D., Bull. Soc. Fr. Mineral, Crystallogr. 99, 193 (1976).Google Scholar
18Phase Diagrams for Ceramists, edited and published by The American Ceramic Society, Inc. (1987), Vol. 6, p. 115, Fig. No. 6392.Google Scholar
19Grader, G. S., Gyorgy, E. M., Gallagher, P. K., O'Bryan, H. M., Johnson, D. W., Jr., Sunshine, S., Zahurak, S. M., Jin, S., and Sherwood, R. C., Phys. Rev. B 38, 757 (1988).CrossRefGoogle Scholar
20Liu, R. S., Huang, Y. T., Jiang, J. M., Wu, P. T., and Chang, C. T., Jpn. J. Appl. Phys. 28, L395 (1989).Google Scholar
21Xu, Z., Han, P. D., Chang, L., Asthana, A., and Payne, D. A., J. Mater. Res. 5, 39 (1990).CrossRefGoogle Scholar
22 JCPDS, “Powder Diffraction Files”, Sets 23–24 and 23–127, page 44 (1986).Google Scholar
23Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 28, L2055 (1988).Google Scholar