Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T17:30:16.543Z Has data issue: false hasContentIssue false

Inhomogeneous distribution of Cr impurities in α–Al2O3 during refractory aging

Published online by Cambridge University Press:  31 January 2011

Laurence Galoisy
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris 6 et 7 et IPGP, 75252 Paris Cedex 05, France
Georges Calas
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris 6 et 7 et IPGP, 75252 Paris Cedex 05, France
Get access

Abstract

Aged alumina refractories have been investigated by EPR (Electron Paramagnetic Resonance) and EPMA (Electron Probe Micro-Analysis). EPMA shows that Cr is homogeneously distributed inside the corundum grains within spatial resolution (1 μm). Cr3+ concentration at the atomic scale is obtained by EPR by the magnitude of dipolar broadening due to Cr-Cr interactions. This local concentration appears to be systematically higher (up to a factor of 10) than the average chromium content of the corundum crystals determined by EPMA. Cr3+ ions may be preferentially concentrated at the vicinity of extended lattice defects which help in accommodating the lattice strain due to the size difference between Al3+ and Cr3+ cations. A random location of these defects explains the apparent homogeneous chromium distribution found by EPMA in these aged refractories.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cook, R.F. and Schrott, A. G.J. Am. Ceram. Soc. 71 (1), 5058 (1988).CrossRefGoogle Scholar
2Clarke, D.R.J. Am. Ceram. Soc. 63 (5-6), 339341 (1980).Google Scholar
3Sinharoy, S.Levenson, L. L. and Day, D.E.Am. Ceram. Soc. Bull. 62 (6), 638641 (1982).Google Scholar
4Jupp, R. S.Stein, D. F. and Smith, D. W.J. Mater. Sci. 15, 96102 (1980).Google Scholar
5Franken, P.E.C. and Gehring, A. P.J. Mater. Sci. 16, 384388 (1981).Google Scholar
6Mendelsohn, M.I.J. Am. Ceram. Soc. 52 (8), 443446 (1969).CrossRefGoogle Scholar
7Grant, W.J.C. and Strandberg, M.W.P.Phys. Rev. 135A, 727739 (1964).CrossRefGoogle Scholar
8Biasi, R. S. de and Rodrigues, D. C. S.J. Am. Ceram. Soc. 68 (7), 409412 (1985).CrossRefGoogle Scholar
9Biasi, R. S. de and D. Rodrigues, C. S.J. Mater. Sci. 16, 968972 (1981).Google Scholar
10Manceau, A. and Calas, G.Am. Mineral. 70 (3), 549558 (1985).Google Scholar
11Wang, H. A. and Kroger, F. A.J. Am. Ceram. Soc. 63 (11-12), 613619 (1980).Google Scholar
12Stubican, V. S.Huzinec, G. and Damjanovic, D.J. Am. Ceram. Soc. 68 (4), 181184 (1985).Google Scholar
13Maquet, M. personal communication.Google Scholar